A NOTE ON HEAT KERNELS OF GENERALIZED HERMITE OPERATORS

Sheng-Ya Feng

Abstract. In this note, the author obtains heat kernels for the generalised Hermite operators $L = -\Delta + \langle Bx, x \rangle$ where B is a (not necessarily symmetry) semi-positive definite matrix.

1. INTRODUCTION

It is well known that the Hermite operators $L = -\frac{d^2}{dx^2} + \lambda^2 x^2$ and $L = -\frac{d^2}{dx^2} - \lambda^2 x^2$ corresponding to harmonic oscillator and anti-harmonic oscillator play an important role in many mathematical and physical problems (cf. [1, 3, 6, 7, 8]). Hence seeking fundamental solutions of such operators becomes a basic and natural problem.

The purpose of this paper is to consider the heat kernels for the generalised operators taking the form $L = -\Delta + \langle Bx, x \rangle$. In particular, one may concern that B is a positive definite or a negative definite matrix. Recently, [5] obtained the heat kernel for L with any $n \times n$ matrix B by using Hamiltonian formalism. The most striking result they obtained is how the geodesics–solution of the Hamiltonian system–behave for different B in terms of the eigenvalues of $B + B^t$. However, the computation is rather complicated as long as the matrix $B + B^t$ has negative eigenvalues, especially when the dimension n is large.

In some special cases, one can get the explicit heat kernel without solving Hamiltonian system. When B is semi-positive definite, a detailed discussion will be presented in Section 2. In Section 3, resorting to the qualitative conclusion in [5], one also reads off an explicit formulae if B is semi-negative definite.

Received March 31, 2010, accepted May 8, 2010.
Communicated by Der-Chen Chang.
2010 Mathematics Subject Classification: 35H20.
Key words and phrases: Fundamental solutions, Hermite operators, Hamiltonian, Transport equation, Action function, Volume element.
Supported by China Scholarship Council No. 2009601210.
2. Heat Kernel for L in \mathbb{R}^n ($B \geq 0$)

One may start with the positive definite case. Consider the generalised Hermite operators of the following form

$$L = -\Delta + \langle Bx, x \rangle$$

where B is a $n \times n$ (not necessarily symmetry) positive definite, $\langle \cdot, \cdot \rangle$ denotes the standard inner product in Euclidean space \mathbb{R}^n. The Hamiltonian function associated with L is

$$H(\xi, x) = -\langle \xi, \xi \rangle + \langle Bx, x \rangle$$

hence one obtains the corresponding Hamiltonian system

$$\dot{x} = \frac{\partial H}{\partial \xi} = -2\xi \quad \text{and} \quad \dot{\xi} = -\frac{\partial H}{\partial x} = -(B + B^t)x$$

The geodesic $x(s)$ between x_0 and x in \mathbb{R}^n satisfies the boundary problem

$$\begin{cases}
\dddot{x} = Ax \\
x(0) = x_0, \; x(t) = x
\end{cases}$$

where $A = 2(B + B^t) > 0$. Since A is a symmetry positive definite matrix, one can find an orthogonal matrix P such that $PAP^t = \text{diag} \{ \lambda_1, \ldots, \lambda_n \} =: \Lambda$, where $\lambda_j > 0$ are eigenvalues of A. Set

$$y(s) = Px(s), \; y_0 = y(0) = Px(0) = Px_0, \; \text{and} \; y = y(t) = Px(t) = Px,$$

then problem (2.1) is equivalent to

$$\begin{cases}
\dddot{y} = \Lambda y \\
y(0) = y_0, \; y(t) = y
\end{cases}$$

According to [4], the energy function in y-variables is

$$E_y = \sum_{j=1}^{n} \lambda_j \left[y_j^2 + \left(y_0^j \right)^2 - 2y_j y_0^j \cosh \left(t\lambda_j^{1/2} \right) \right] \frac{2 \sinh^2 \left(t\lambda_j^{1/2} \right)}{2}$$

Noticing that $E = \frac{1}{2} (\langle \dot{x}, \dot{x} \rangle - \langle x, \dddot{x} \rangle)$, one obtains

$$E_x = \frac{1}{2} (\langle P\dot{x}, P\dot{x} \rangle - \langle Px, P\dddot{x} \rangle)$$

$$= \frac{1}{2} (\langle \dot{y}, \dot{y} \rangle - \langle y, \dddot{y} \rangle)$$

$$= E_y$$

$$= \sum_{j=1}^{n} \lambda_j \left[y_j^2 + \left(y_0^j \right)^2 - 2y_j y_0^j \cosh \left(t\lambda_j^{1/2} \right) \right] \frac{2 \sinh^2 \left(t\lambda_j^{1/2} \right)}{2}$$
To move on, one needs some properties on the action function.

Proposition. For action function $S = -\int Edt$, the following equalities hold:

\[
|\nabla S|^2 = \langle Ax, x \rangle + 2E_x
\]

(2.3)

\[
\Delta S = \frac{1}{t} tr \left[\left(tA^{1/2} \right) \coth \left(tA^{1/2} \right) \right]
\]

(2.4)

where $\varphi(M)$ denotes functional calculus of continuous function φ on the symmetry positive definite matrix M, and $tr(M)$ denotes the trace of matrix M.

Proof. A direct computation shows that

\[
S = -\int Edt
\]

\[
= \frac{1}{2t} \sum_{j=1}^{n} \left(t\lambda_j^{1/2} \right) \coth \left(t\lambda_j^{1/2} \right) y_j^2 + \frac{1}{2t} \sum_{j=1}^{n} \left(t\lambda_j^{1/2} \right) \coth \left(t\lambda_j^{1/2} \right) (y_j^0)^2
\]

\[
- \frac{1}{t} \sum_{j=1}^{n} \left(t\lambda_j^{1/2} \right) y_j y_j^0
\]

\[
= \frac{1}{2t} \left\langle \sqrt{\left(tA^{1/2} \right) \coth \left(tA^{1/2} \right) y}, \sqrt{\left(tA^{1/2} \right) \coth \left(tA^{1/2} \right) y} \right\rangle
\]

\[
+ \frac{1}{2t} \left\langle \sqrt{\left(tA^{1/2} \right) \coth \left(tA^{1/2} \right) y_0}, \sqrt{\left(tA^{1/2} \right) \coth \left(tA^{1/2} \right) y_0} \right\rangle
\]

\[
- \frac{1}{t} \left\langle \sqrt{\frac{tA^{1/2}}{\sinh \left(tA^{1/2} \right)}} y, \sqrt{\frac{tA^{1/2}}{\sinh \left(tA^{1/2} \right)}} y_0 \right\rangle
\]

\[
= \frac{1}{2t} \left\langle \left(tA^{1/2} \right) \coth \left(tA^{1/2} \right) x, x \right\rangle + \frac{1}{2t} \left\langle \left(tA^{1/2} \right) \coth \left(tA^{1/2} \right) x_0, x_0 \right\rangle
\]

\[
- \frac{1}{t} \left\langle \frac{tA^{1/2}}{\sinh \left(tA^{1/2} \right)} x_0, x \right\rangle
\]

hence,

\[
\partial_j S = \frac{1}{t} \left\langle \left(tA^{1/2} \right) \coth \left(tA^{1/2} \right) x_j, e_j \right\rangle - \frac{1}{t} \left\langle \frac{tA^{1/2}}{\sinh \left(tA^{1/2} \right)} x_0, e_j \right\rangle
\]

\[
|\nabla S|^2 = \sum_{j=1}^{n} (\partial_j S)^2
\]

(2.5)

\[
= \frac{1}{t^2} \left\langle \left(tA^{1/2} \right) \coth \left(tA^{1/2} \right) x, \left(tA^{1/2} \right) \coth \left(tA^{1/2} \right) x \right\rangle
\]

\[
+ \left\langle \frac{tA^{1/2}}{\sinh \left(tA^{1/2} \right)} x_0, \frac{tA^{1/2}}{\sinh \left(tA^{1/2} \right)} x_0 \right\rangle
\]
\[-2 \left< \left(tA^{1/2} \right) \coth \left(tA^{1/2} \right), \frac{tA^{1/2}}{\sinh (tA^{1/2})}x_0 \right> \]

\[= \frac{1}{t^2} \left\{ \sum_{j=1}^{n} \left[\left(t\lambda_j^{1/2} \right) \coth \left(t\lambda_j^{1/2} \right) y_j \right]^2 + \sum_{j=1}^{n} \left(\frac{t\lambda_j^{1/2}}{\sinh (t\lambda_j^{1/2})} y_j^0 \right)^2 \right\} \]

\[-2 \sum_{j=1}^{n} \frac{t^2\lambda_j \coth (t\lambda_j^{1/2})}{\sinh (t\lambda_j^{1/2})} y_j y_j^0 \]

\[= \sum_{j=1}^{n} \frac{\lambda_j \cosh^2 (t\lambda_j^{1/2})}{\sinh^2 (t\lambda_j^{1/2})} y_j^2 \]

\[+ \sum_{j=1}^{n} \frac{\lambda_j \left[y_j^2 + (y_j^0)^2 \right]}{\sinh (t\lambda_j^{1/2})} - \sum_{j=1}^{n} \frac{\lambda_j \left[y_j^2 + (y_j^0)^2 \right]}{\sinh (t\lambda_j^{1/2})} \]

\[+ \sum_{j=1}^{n} \frac{\lambda_j \cosh (t\lambda_j^{1/2})}{\sinh (t\lambda_j^{1/2})} y_j y_j^0 \]

\[= \sum_{j=1}^{n} \lambda_j y_j^2 + 2E_x \]

\[= \left< Ax, x \right> + 2E_x \]

Differentiating equation (2.5) on \(x_j \) once more, one has

\[\partial^2_{x_j} S = \frac{1}{t} \left< \left(tA^{1/2} \right) \coth \left(tA^{1/2} \right), e_j, e_j \right> \]

Consequently,

\[\Delta S = \sum_{j=1}^{n} \partial^2_{x_j} S = \frac{1}{t} \text{tr} \left[\left(tA^{1/2} \right) \coth \left(tA^{1/2} \right) \right] = \sum_{j=1}^{n} \lambda_j^{1/2} \coth \left(t\lambda_j^{1/2} \right) \]

One expects to find the heat kernel of \(L \) in the following form

\[K \left(x_0, x, t \right) = V \left(t \right) e^{\alpha S} \]

where \(\alpha \) is a real number to be chosen later. Then

\[(2.6) \quad \partial_t K = e^{\alpha S} \left[V' \left(t \right) - \alpha EV \left(t \right) \right] \]

and by use of the Proposition

\[\Delta e^{\alpha S} = \alpha e^{\alpha S} (\alpha |\nabla S|^2 + \Delta S) \]

\[= \alpha e^{\alpha S} \left[\alpha \left< Ax, x \right> + 2\alpha E + \sum_{j=1}^{n} \lambda_j^{1/2} \coth \left(t\lambda_j^{1/2} \right) \right] \]
On the one hand, kernel \(K(x_0, x, t) \) of the Heat operator \(P = \partial_t + L = \partial_t - \Delta + \langle Bx, x \rangle \) satisfies \(PK = 0 \) for any \(t > 0 \); on the other hand, noticing that \(\langle Ax, x \rangle = 4 \langle Bx, x \rangle \),

\[
P_k = \partial_t K - V(t) \Delta e^{\alpha S} + \langle Bx, x \rangle V(t) e^{\alpha S}
\]

\[
= K \left[\frac{V'(t)}{V(t)} - \alpha (1 + 2\alpha) E - \alpha^2 \langle Ax, x \rangle + \langle Bx, x \rangle - \alpha \sum_{j=1}^{n} \lambda_j^{1/2} \coth \left(t\lambda_j^{1/2} \right) \right]
\]

\[
= K \left[\frac{V'(t)}{V(t)} - \alpha (1 + 2\alpha) E + (1 - 4\alpha^2) \langle Bx, x \rangle - \alpha \sum_{j=1}^{n} \lambda_j^{1/2} \coth \left(t\lambda_j^{1/2} \right) \right].
\]

Let \(\alpha = -\frac{1}{2} \) and \(V(t) \) satisfy the transport equation

\[
\frac{V'(t)}{V(t)} = -\frac{1}{2} \sum_{j=1}^{n} \lambda_j^{1/2} \coth \left(t\lambda_j^{1/2} \right)
\]

Integration yields \(V(t) = \prod_{j=1}^{n} \frac{C_j}{\sinh^{1/2}(\lambda_j^{1/2})} \). Hence kernel \(K \) has the form

\[
K(x_0, x, t) = \left(\prod_{j=1}^{n} \frac{C_j}{\sinh^{1/2}(\lambda_j^{1/2})} \right)
\]

\[
\times e^{-\frac{1}{4t} \left((tA^{1/2}) \coth(tA^{1/2}) x_0, x_0 \right) - 2 \left(\frac{tA^{1/2}}{\sinh(tA^{1/2})} \right) x_0, x}.
\]

Since kernel \(K \) becomes Gaussian \(\frac{1}{(4\pi t)^{n/2}} e^{-\frac{1}{4t} \|x-x_0\|^2} \) if \(B \to 0 \), one may compare the volume element \(V(t) \) with \(\frac{1}{(4\pi t)^{n/2}} \) to establish the parameters

\[
C_j = \left(\frac{\lambda_j}{16\pi^2} \right)^{1/4}.
\]

Theorem. Let \(B \) be a \(n \times n \) positive definite matrix, then \(A = 2 (B + B') \) is a symmetry positive definite matrix whose Jordan normal form is denoted by \(\text{diag}\{\lambda_1, \ldots, \lambda_n\} \) with \(\lambda_j > 0 \). The kernel of the heat operator \(P = \partial_t - \Delta + \langle Bx, x \rangle \) is

\[
K(x_0, x, t) = \frac{1}{(4\pi t)^{n/2}} \left(\prod_{j=1}^{n} \frac{t\lambda_j^{1/2}}{\sinh(t\lambda_j^{1/2})} \right)^{1/2}
\]

\[
\times e^{-\frac{1}{4t} \left((tA^{1/2}) \coth(tA^{1/2}) x_0, x_0 \right) - 2 \left(\frac{tA^{1/2}}{\sinh(tA^{1/2})} \right) x_0, x}.
\]

(2.8)
Remark. The form of K is still valid if $B \geq 0$, but the terms $\frac{t\lambda_j^{1/2}}{\sinh(t\lambda_j^{1/2})}$, $(tA^{1/2}) \coth(tA^{1/2})$ and $\frac{tA^{1/2}}{\sinh(tA^{1/2})}$ in equation (2.8) should be replaced by their corresponding limiting forms. Specifically, if

$$PAP^t = \Lambda = \text{diag}\{\lambda_1, \ldots, \lambda_m, 0, \ldots, 0\}$$

with $\lambda_j > 0$, $j = 1, \ldots, m$ and $\lambda_l = 0$, $l = m + 1, \ldots, n$, then the volume element

$$\prod_{j=1}^{n} \frac{t\lambda_j^{1/2}}{\sinh(t\lambda_j^{1/2})} = \prod_{j=1}^{m} \frac{t\lambda_j^{1/2}}{\sinh(t\lambda_j^{1/2})},$$

and

$$\left(\frac{tA^{1/2}}{\sinh(tA^{1/2})}\right) = P^t \text{diag}\left\{\left(\frac{t\lambda_1^{1/2}}{\sinh(t\lambda_1^{1/2})}\right), \ldots, \left(\frac{t\lambda_m^{1/2}}{\sinh(t\lambda_m^{1/2})}\right), 1, \ldots, 1\right\} P,$$

$$\left(\frac{tA^{1/2}}{\coth(tA^{1/2})}\right) = P^t \text{diag}\left\{\left(\frac{t\lambda_1^{1/2}}{\coth(t\lambda_1^{1/2})}\right), \ldots, \left(\frac{t\lambda_m^{1/2}}{\coth(t\lambda_m^{1/2})}\right), 1, \ldots, 1\right\} P.$$

3. OPEN QUESTION

If B has negative eigenvalues, the energy function E is not well defined on singular regions which are of zero measure in $2n + 1$ dimensional Lebesgue measure (cf. [5]). So far the only way to establish the singular regions is to solve the Hamiltonian system, which requires heavy computations for large n.

Here one conjectures that the kernel has the following form. In particular, for the same reason mentioned in the Remark above, it is sufficient to formulate the case $B < 0$.

Conjecture. Let $B < 0$ and $A = 2(B + B^t) \sim \text{diag}\{\lambda_1, \ldots, \lambda_n\}$ with $\lambda_j < 0$. Then one kernel of the heat operator $P = \partial_t - \Delta + \langle Bx, x \rangle$ is

$$K(x_0, x, t) = \frac{1}{(4\pi t)^{n/2}} \left(\prod_{j=1}^{n} \frac{t(-\lambda_j)^{1/2}}{\sin\left(\frac{t(-\lambda_j)^{1/2}}{2}\right)}\right)^{1/2} e^{\left\langle \frac{1}{2} \frac{(-A)^{1/2}x_0}{\sinh\left(\frac{t(-A)^{1/2}}{2}\right)} \right\rangle} e^{-\frac{1}{4t}\left[\langle t(-A)^{1/2} \cot(-A)^{1/2} \rangle x_0, x \rangle + \langle t(-A)^{1/2} \cot(-A)^{1/2} \rangle x_0, x_0 \rangle} \right\rangle}$$

a.e. $(x_0, x, t) \in \mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R}^+$.
REFERENCES

2. R. Beals, B. Gaveau and P. C. Greiner, Complex Hamiltonian mechanics and parame-

Sheng-Ya Feng
School of Mathematical Sciences
Peking University
Beijing 100871
P. R. China
E-mail: s.y.feng@pku.edu.cn