HAYMAN’S CONJECTURE IN A p-ADIC FIELD

Jacqueline Ojeda

Abstract. In this paper we study the famous Hayman’s conjecture for transcendental meromorphic functions in a p-adic field by using methods of p-adic analysis and particularly the p-adic Nevanlinna theory.

In \mathbb{C}, W. K. Hayman’s stated that if f is a transcendental meromorphic function, then $f' + af^m$ has infinitely many zeros that are not zeros of f for each integer $m \geq 3$ and $a \in \mathbb{C} \setminus \{0\}$, which was proved in [2], [6], [8] and [11]. Here we examine the problem in an algebraically closed complete ultrametric field K of characteristic zero. Considering the function $f' + Tf^m$ with $T \in K(x)$, we show that Hayman’s statement holds for each $m \geq 5$ and $m = 1$. Further, if the residue characteristic of K is zero, then the statement holds for each positive integer m different from 2. We also examine the problem inside an “open” disc.

1. INTRODUCTION AND RESULTS

1.1 Definitions, Notations and Main Results

Throughout this paper, K will denote an algebraically closed field of characteristic zero, complete for an ultrametric absolute value. In K, the valuation v is defined by a logarithm function $\log: v(x) = -\log|x|$.

We denote by $A(K)$ the set of entire functions in K and by $M(K)$ the set of meromorphic functions in K, i.e., the field of fractions of $A(K)$. Obviously, $M(K)$ contains the field $K(x)$ of rational functions. We remember that the elements in $M(K) \setminus K(x)$ are called transcendental functions and have infinitely many zeros or infinitely many poles.

Given $a \in K$ and r_1, r_2 such that $0 < r_1 < r_2$, we denote by $\Gamma(a, r_1, r_2)$ the annulus

Received March 27, 2007, accepted May 7, 2007.
Communicated by Julie Tzu-Yueh Wang.

2000 Mathematics Subject Classification: 12J25, 30G06, 32P05.
Key words and phrases: Meromorphic, Nevanlinna, Ultrametric, Conjecture.
Grant from the special program DLF 22 from the Chilean Government.

2295
\[\{x \in \mathbb{K} : r_1 < |x - a| < r_2\}, \text{ and given } r > 0, \text{ we denote by } d(a, r^-) \text{ the open disc } \\
\{x \in \mathbb{K} : |x - a| < r\}, \text{ by } C(a, r) \text{ the circle } \{x \in \mathbb{K} : |x - a| = r\}, \text{ and} \\
\text{by } d(a, r) := d(a, r^-) \cup C(a, r) \text{ the closed disc. Consequently, we denote by } \\
\mathcal{A}(d(a, r^-)) \text{ the set of analytic functions in } d(a, r^-), \text{ i.e., the } \mathbb{K}\text{-algebra of power} \\
\text{series } \sum_{n=0} a_n (x - a)^n \text{ converging in } d(a, r^-), \text{ and by } \mathcal{M}(d(a, r^-)) \text{ the set of} \\
\text{meromorphic functions inside } d(a, r^-), \text{ i.e., the field of fractions of } \mathcal{A}(d(a, r^-)). \\
\text{Moreover, we denote by } \mathcal{A}_b(d(a, r^-)) \text{ the } \mathbb{K}\text{-subalgebra of } \mathcal{A}(d(a, r^-)) \text{ consisted of} \\
\text{the bounded analytic functions } f \in \mathcal{A}(d(a, r^-)), \text{ which satisfy } \sup_{n \in \mathbb{N}} |a_n| r^n < \\
+\infty, \text{ and by } \mathcal{M}_b(d(a, r^-)) \text{ the field of fractions of } \mathcal{A}_b(d(a, r^-)). \text{ Finally, we set} \\
\mathcal{A}_u(d(a, r^-)) = \mathcal{A}(d(a, r^-)) \setminus \mathcal{A}_b(d(a, r^-)) \text{ and } \mathcal{M}_u(d(a, r^-)) = \mathcal{M}(d(a, r^-)) \\
\setminus \mathcal{M}_b(d(a, r^-)). \]

The paper aims at studying Hayman’s conjecture for transcendental meromorphic functions, first in a field of any residue characteristic and next in a field of residue characteristic zero. The problem is the following one: let \(f \in \mathcal{M}(\mathbb{K}) \) be
transcendental and \(T \in \mathbb{K}(x) \). Can we conclude that \(f' + T f^m \) has infinitely many
zeros that are not zeros of \(f \) ? Setting \(g = \frac{1}{f} \), it is easily seen that the zeros of
\(f' + T f^m \) which are not zeros of \(f \) are those of \(g' g^{m-2} - T \). Thus, solving Hayman’s conjecture is equivalent to answering the question whether, given \(g \in \mathcal{M}(\mathbb{K}) \) transcendental and \(T \in \mathbb{K}(x) \), \(g' g^n - T \) has infinitely many zeros.

Indeed, let
\[g(x) = \frac{1}{f(x)}. \]

Then,
\[
f'(x) + T f^m(x) = \frac{-1}{[g(x)]^2} g'(x) + \frac{T}{[g(x)]^m} \\
= \frac{-1}{[g(x)]^m} (g^{m-2} g'(x) - T),
\]
where we do \(n = m - 2 \).

The question has been studied in complex analysis for many years, considering
\(T = a \in \mathbb{C} \). In 1959, W. K. Hayman [8] proved that if \(g \) is a transcendental
meromorphic function, \(a \in \mathbb{C} \setminus \{0\} \) and \(n \geq 3 \), then \(g' g^n - a \) has infinitely many
zeros. Twenty years later, E. Mues [11] solved the case \(n = 2 \), and finally in 1995
W. Bergweiler and A. Eremenko [2], and independently H. H. Chen and M. L. Fang [6] proved that this also holds for \(n = 1 \), which completed the proof of Hayman’s conjecture. Thus, in the complex case, we could deduce that \(f' + a f^m \) has infinitely many zeros which are not zeros of \(f \) when \(m \geq 3 \).
Remark 1. In \(\mathbb{C} \), \(f' + f^m \) may have no zero if \(m = 1 \) or \(m = 2 \) as shown by \(f(x) = \exp(x) \) and \(f(x) = \tan(-x) \) respectively.

In \(p \)-adic analysis, we can also obtain results in a similar problem. Before stating the main theorems, we have to recall some notations used in several works in \(p \)-adic analysis, particularly those used by A. Escassut in [7].

Given \(f(x) = \sum_{n=0}^{\infty} a_n x^n \in \mathcal{A}(\mathbb{K}) \) (resp. in \(\mathcal{A}(d(0, R^-)) \)) and \(r > 0 \) (resp. \(r \in]0, R[\)), we set

\[
|f|(r) = \lim_{|x| \to r^-, |x| \neq r} |f(x)|.
\]

Indeed, this limit exists and \(|*|\) is an absolute value on \(\mathcal{A}(\mathbb{K}) \) (resp. on \(\mathcal{A}(d(0, R^-)) \)). It has a natural continuation to \(\mathcal{M}(\mathbb{K}) \) (resp. \(\mathcal{M}(d(0, R^-)) \)) by setting \(|f|(r) = \frac{\nu_f(r)}{\nu_h(r)}\) whenever \(f = \frac{g}{h} \), \(g, h \in \mathcal{A}(\mathbb{K}) \) (resp. \(g, h \in \mathcal{A}(d(0, R^-)) \)).

On the other hand, let \(f = \sum_{n \in \mathbb{Z}} a_n x^n \in \mathcal{M}(\mathbb{K}) \) and let \(r > 0 \). Consider \(f \) in the circle \(C(0, r) \). We will denote by \(\nu^+(f, r) \) (resp. \(\nu^-(f, r) \)) the biggest integer \(i \in \mathbb{Z} \) (resp. the smallest integer \(i \in \mathbb{Z} \)) such that \(v(a_i) - i \log r = \inf_{n \in \mathbb{Z}} v(a_n) - n \log r \).

We will only write \(\nu(f, r) \) when \(\nu^+(f, r) = \nu^-(f, r) \).

Remark 2. We now have to recall certain classical properties of meromorphic functions (see Chapter 23 [7]). Let \(f \in \mathcal{M}(d(0, R^-)) \) and let \(r \in]0, R[\).

(1) The difference between the number of zeros and that of poles of \(f \) in the circle \(C(0, r) \), taking multiplicities into account, is equal to \(\nu^+(f, r) - \nu^-(f, r) \).

(2) If \(f \) has zeros and poles in the closed disc \(d(0, r') \), and has no zeros and no poles in the annuli \(\Gamma(0, r', r'') \), then \(\nu^+(f, r) = \nu^-(f, r) \) \(\forall r \in]r', r''[\).

Throughout the paper we consider \(\mathbb{N}^* = \mathbb{N} \setminus \{0\} \), \(R > 1 \) an integer and \(T = \frac{A}{B} \in \mathbb{K}(x) \) with \(A, B \in \mathbb{K}[x] \) having no common zeros.

Theorem 1. Let \(f \in \mathcal{M}(\mathbb{K}) \) be transcendental (resp. \(f \in \mathcal{M}_u(d(0, R^-)) \)). If \(\lim_{r \to +\infty} |T|(r) > 0 \) (resp. \(\lim_{r \to +\infty} |T|(r) > \frac{1}{R} \)), then \(f' + Tf \) has infinitely many zeros that are not zeros of \(f \).

Theorem 2. Let \(f \in \mathcal{M}(\mathbb{K}) \) be transcendental and \(\deg(A) \geq \deg(B) \) (resp. \(f \in \mathcal{M}_u(d(0, R^-)) \)). Let \(m > 2 \) be an integer. If \(\limsup_{r \to +\infty} |f|(r) > 0 \) (resp. \(\limsup_{r \to +\infty} |f|(r) = +\infty \)), then \(f' + Tf^m \) has infinitely many zeros that are not zeros of \(f \).
Corollary 1. Let \(f \in \mathcal{M}(\mathbb{K}) \) be transcendental and \(\deg(A) \geq \deg(B) \) (resp. let \(f \in \mathcal{M}_u(d(0, R^-)) \)). If \(f \) has a finite number of poles and \(m > 2 \) is an integer, then \(f' + T f^m \) has infinitely many zeros that are not zeros of \(f \).

Proof. Since \(f \) has a finite number of poles and \(f \) is a transcendental meromorphic function in \(\mathbb{K} \) (resp. \(f \in \mathcal{M}_u(d(0, R^-)) \)), then necessarily \(f \) has infinitely many zeros. Therefore, \(\lim_{r \to +\infty} |f(r)| = +\infty \) (resp. \(\lim_{r \to R} |f(r)| = +\infty \)). So, by Theorem 2, we can deduce the corollary.

Corollary 2. Let \(g \in \mathcal{M}(\mathbb{K}) \) be transcendental and \(\deg(A) \geq \deg(B) \) (resp. let \(g \in \mathcal{M}_u(d(0, R^-)) \)). If \(g \) has a finite number of zeros, then \(g'g^n - T \) has infinitely many zeros for all \(n \in \mathbb{N}^* \).

Proof. Since \(g \) has a finite number of zeros, then \(f = \frac{1}{g} \) has a finite number of poles. So, applying Theorem 2 to \(f \) with \(m \geq 3 \), and considering that \(n = m - 2 \), we can deduce the corollary.

Let \(\hat{\mathbb{K}} \) be an algebraic extension of the field \(\mathbb{K} \). In the following lemma, which is very useful for the proofs of the following theorems, we will denote by \(\hat{d}(0, R^-) \) the open disc \(\{ x \in \hat{\mathbb{K}} : |x| < R \} \) contained in \(\hat{\mathbb{K}} \).

Lemma 1. Let \(f \in \mathcal{M}(d(0, R^-)) \) and let \(\hat{f} \) be the meromorphic function defined by \(f \) in \(\hat{d}(0, R^-) \). Then the zeros and the poles of \(\hat{f} \) in \(\hat{d}(0, R^-) \) are exactly the zeros and the poles of \(f \) in \(d(0, R^-) \), taking multiplicities into account.

Remark 3. We remember that, given a meromorphic function \(f \) in the open disc \(d(0, R^-) \subset \mathbb{K} \), it is not always possible to find analytic functions \(h, l \) in \(d(0, R^-) \) without common zeros such that \(f = \frac{h}{l} \), except if \(\mathbb{K} \) is spherically complete, i.e., every decreasing filter on \(\mathbb{K} \) has a center in \(\mathbb{K} \) (see Chapter 3 [7] and [10]). In our case, \(\mathbb{K} \) is an algebraically closed complete ultrametric field, therefore it admits a spherically complete algebraically closed extension \(\hat{\mathbb{K}} \) (see Chapter 7 [7]).

Now, in the field \(\mathbb{K} \), consider \(f \in \mathcal{M}(d(0, R^-)) \). It obviously defines a function \(\hat{f} \in \mathcal{M}(\hat{d}(0, R^-)) \) in the field \(\hat{\mathbb{K}} \). And then, we may write \(\hat{f} \) in the form \(\frac{b_0}{l_0} \) with \(b_0, l_0 \in A(\hat{d}(0, R^-)) \) having no common zeros. Moreover, by Lemma 1, all zeros and poles of \(\hat{f} \) in \(\hat{\mathbb{K}} \) actually lie in \(\mathbb{K} \). So, by Theorem 25.5 [7], there exists \(h \in A(d(0, R^-)) \) such that the function \(\hat{h} \in A(\hat{d}(0, R^-)) \) defined in \(\hat{\mathbb{K}} \) satisfies the following:

1. \(h_0 \) divides \(\hat{h} \) in \(A(\hat{d}(0, R^-)) \).
2. The function \(u = \frac{\hat{h}}{\hat{h}_0} \) belongs to \(A_0(\hat{d}(0, R^-)) \).

Then we may set \(l = u l_0 \in A(\hat{d}(0, R^-)) \). Moreover, we check that \(l \) has coefficients in \(\mathbb{K} \) because \(f = \frac{h}{l} \), hence \(l = f h \) belongs to \(\mathcal{M}(d(0, R^-)) \) and has no pole in \(d(0, R^-) \).
In the following theorems, when it is necessary, we shall consider \(f \in \mathcal{M}(\mathbb{K}) \) because clearly \(\mathcal{M}(d(0, R^*)) \subset \mathcal{M}(\mathbb{K}) \).

In the general \(p \)-adic context, the following theorem is the equivalence of this proved by W. K. Hayman (Theorem 9 [8]). In the proofs of this theorem and the following theorems, the previous Remark 3 and Lemma 1 will be useful.

Theorem 3. Let \(f \in \mathcal{M}(\mathbb{K}) \) be transcendental and \(\deg(A) \geq \deg(B) \) (resp. \(f \in \mathcal{M}_u(d(0, R^-)) \)). If \(m \geq 5 \) is an integer, then \(f' + Tf^m \) has infinitely many zeros that are not zeros of \(f \). Moreover, \(f' + f^4 \) must have at least one zero in \(\mathbb{K} \) that is not a zero of \(f \).

Considering (1) and the previous theorem, we obtain the following corollaries.

Corollary 3. Let \(g \in \mathcal{M}(\mathbb{K}) \) be transcendental and \(\deg(A) \geq \deg(B) \) (resp. \(g \in \mathcal{M}_u(d(0, R^-)) \)). If \(n \geq 3 \) is an integer, then \(g'g^n - T \) has infinitely many zeros.

Corollary 4. Let \(g \in \mathcal{M}(\mathbb{K}) \) be transcendental and \(\deg(A) \geq \deg(B) \). Then \(g'g^2 - T \) has at least one zero in \(\mathbb{K} \).

In order to state Theorem 4, we need to recall some classical definitions. Let \(U_{\mathbb{K}} = \{ x \in \mathbb{K} : |x| \leq 1 \} \) and \(W_{\mathbb{K}} = \{ x \in \mathbb{K} : |x| < 1 \} \) be the valuation ring and the valuation ideal of \(\mathbb{K} \) respectively. The residue characteristic of \(\mathbb{K} \) is the characteristic of the quotient of \(U_{\mathbb{K}} \) by \(W_{\mathbb{K}} \) (see Chapter 1 [7]).

Lemma 2. Let \(f(x) = \sum_{n=-\infty}^{+\infty} a_n x^n \) be a Laurent series converging for \(r' < |x| < r'' \) and have no zeros and no poles in \(\Gamma(0, r', r'') \). Let \(q = \nu(f, r) \quad \forall r \in]r', r''[. \) If the residue characteristic of \(\mathbb{K} \) does not divide \(q \), then

\[
|f'(x)| = \frac{|f(x)|}{|x|} \quad \forall x \in \Gamma(0, r', r'').
\]

Corollary 5. Let \(f \in \mathcal{M}(d(0, r'')) \). Assume that \(f \) has \(s \) zeros and \(t \) poles in \(d(0, r') \) and has no zeros and no poles in \(\Gamma(0, r', r'') \). If the residue characteristic of \(\mathbb{K} \) does not divide \(s - t \), then \(|f'(x)| = \frac{f(x)}{|x|} \quad \forall x \in \Gamma(0, r', r''). \)

Proof. Indeed, by Theorem 23.4 [7], \(\nu^+(f, r) = \nu^-(f, r) \quad \forall r \in]r', r'\). If we consider \(f = \frac{h}{l} \) with \(h, l \in \mathcal{A}(d(0, r'')) \), we have

\[
\nu(f, r) = \nu(h, r) - \nu(l, r) = s - t,
\]
whenever \(r \in]r', r''[\). So, by Lemma 2, we deduce the corollary.

Definition. Let \(f \in \mathcal{M}(\mathbb{K}) \) (resp. \(f \in \mathcal{M}(d(0, R^{-})) \)).

A number \(r \in [0, +\infty[\) (resp. \(r \in]0, R[\)) will be said to be \(f \)-suitable if the difference between the number of zeros and that of poles of \(f \) in \(d(0, r) \), taking multiplicities into account, is not a multiple of the residue characteristic of \(\mathbb{K} \).

A sequence \(\{r_n\}_{n \in \mathbb{N}} \subset [0, +\infty[\) (resp. \(\{r_n\}_{n \in \mathbb{N}} \subset]0, R[\)) will be said to be \(f \)-suitable if each \(r_n \) is \(f \)-suitable and \(\lim_{n \to +\infty} r_n = +\infty \) (resp. \(\lim_{n \to +\infty} r_n = R \)).

The function \(f \) will be said to be optimal if there exists a \(f \)-suitable sequence \(\{r_n\}_{n \in \mathbb{N}} \) in \(]0, +\infty[\) (resp. in \(]0, R[\)).

Theorem 4. Let \(g \in \mathcal{M}(\mathbb{K}) \) be transcendental (resp. \(g \in \mathcal{M}_u(d(0, R^{-})) \)) and let \(\{r_n\}_{n \in \mathbb{N}} \) be a \(g \)-suitable sequence. Then \(\frac{d}{g} \) has infinitely many zeros.

Corollary 6. Let \(g \in \mathcal{M}(\mathbb{K}) \) be transcendental (resp. \(g \in \mathcal{M}_u(d(0, R^{-})) \)) and let \(\{r_n\}_{n \in \mathbb{N}} \) be a \(g \)-suitable sequence. Then \(g'g^n \) and \(\frac{d}{g} \) have infinitely many zeros whenever \(n \in \mathbb{N}^* \).

Proof. Let \(n \in \mathbb{N} \). Observe that \(g'g^n = \left(\frac{d'}{g} \right) g^{n+1} \) and \(\frac{d}{g} = \left(\frac{d'}{g} \right) \frac{1}{g^{n+1}} \). Note that every zero of \(\frac{d'}{g} \) is neither a zero nor a pole of \(g \), every zero and every pole of \(g \) being a simple pole of \(\frac{d'}{g} \). Thereby, since \(\frac{d'}{g} \) has infinitely many zeros, we deduce that \(g'g^n \) and \(\frac{d}{g} \) have infinitely many zeros in \(\mathbb{K} \) (resp. in \(d(0, R^{-}) \)).

Theorem 5. Let \(f \in \mathcal{M}(\mathbb{K}) \) be transcendental and optimal. If \(\deg(A) = \deg(B) \) and if \(m \geq 3 \) is an integer, then \(f' + Tf^m \) has infinitely many zeros that are not zeros of \(f \).

Thus, by (1) we may derive the following corollary.

Corollary 7. Let \(g \in \mathcal{M}(\mathbb{K}) \) be transcendental and optimal. If \(\deg(A) = \deg(B) \), then \(g'g^n - T \) has infinitely many zeros for every \(n \in \mathbb{N}^* \).

Theorem 6. Let \(f \in \mathcal{M}_u(d(0, R^{-})) \) be an optimal function and let \(U = \frac{d}{U} \in \mathcal{M}_u(d(0, R^{-})) \) have the same finite number of zeros and poles in \(d(0, R^{-}) \). If \(m \geq 3 \) is an integer, then \(f' + U f^m \) has infinitely many zeros that are not zeros of \(f \).

By (1), the following corollary is immediate.

Corollary 8. Let \(g \in \mathcal{M}_u(d(0, R^{-})) \) be an optimal function and let \(U \in \mathcal{M}_u(d(0, R^{-})) \) have the same finite number of zeros and poles in \(d(0, R^{-}) \). Then \(g'g^n - U \) has infinitely many zeros for every \(n \in \mathbb{N}^* \).
Hayman’s Conjecture in a p-Adic Field

Since almost every meromorphic function in a field of residue characteristic zero is optimal, by Theorems 5 and 6, we can deduce Corollaries 9 - 10 and 11 - 12 respectively.

Corollary 9. Let $f \in \mathcal{M}(K)$ be transcendental and $\deg(A) = \deg(B)$. If K has residue characteristic zero and $m \geq 3$ is an integer, then $f' + Tf^m$ has infinitely many zeros that are not zeros of f.

Corollary 10. Let $g \in \mathcal{M}(K)$ be transcendental and $\deg(A) = \deg(B)$. If K has residue characteristic zero, then $g'g^n - T$ has infinitely many zeros for every $n \in \mathbb{N}^*$.

Corollary 11. Let $f \in \mathcal{M}(d(0, R^-))$ be such that 0 is neither a zero nor a pole of f. Let $r \in]0, R[$. We denote by $Z(r, f)$ the counting function of zeros of f in $d(0, R^-)$

$$Z(r, f) = \sum_{\omega_\alpha(f) > 0 \atop |\alpha| \leq r} \omega_\alpha(f)(\log r - \log |\alpha|),$$

and similarly, we set

$$\overline{Z}(r, f) = \sum_{\omega_\alpha(f) > 0 \atop |\alpha| \leq r} (\log r - \log |\alpha|).$$
We shall also consider the counting functions of poles of f in $d(0, R^-)$

$$N(r, f) = Z(r, \frac{1}{f}) \quad \text{and} \quad \overline{N}(r, f) = \overline{Z}(r, \frac{1}{f}).$$

The Nevanlinna function $T(r, f)$ is defined by

$$T(r, f) = \max\{Z(r, f) + \log |f(0)|; \ N(r, f)\}.$$

A. Boutabaa and A. Escassut in [5], A. Escassut in [7] and P. C. Hu and C. C. Yang in [9] give us results related to the p-adic Nevanlinna theory which we will use in the later proofs. Some of them are the followings.

Lemma 3. If $f \in \mathcal{A}(K) \setminus K[x]$ (resp. If $f \in \mathcal{A}_u(d(0, R^-))$), then f has infinitely many zeros.

Lemma 4. Let $f \in \mathcal{A}(K)$ (resp. Let $f \in \mathcal{A}(d(0, R^-))$) be such that $f(0) \neq 0$ and let $r > 0$ (resp. let $r \in [0, R]$). For any $b \in K$, we have

$$Z(r, f - b) = Z(r, f) + O(1).$$

Lemma 5. Let $f \in \mathcal{A}(K)$ (resp. Let $f \in \mathcal{A}(d(0, R^-))$) be such that $f(0) \neq 0$ and let $r > 0$ (resp. let $r \in [0, R]$). The functions $T(r, f)$ and $Z(r, f)$ are equivalent up to an additive constant.

Proposition 1. Let $f_i \in \mathcal{M}(K)$ (resp. Let $f_i \in \mathcal{M}(d(0, R^-))$) be such that $f_i(0) \neq 0$, ∞ for $i = 1, ..., k$. Then, for $r > 0$ (resp. for $r \in [0, R]$), we have

$$Z(r, \prod_{i=1}^{k} f_i) \leq \sum_{i=1}^{k} Z(r, f_i),$$

$$T(r, \sum_{i=1}^{k} f_i) \leq \sum_{i=1}^{k} T(r, f_i), \quad T(r, \prod_{i=1}^{k} f_i) \leq \sum_{i=1}^{k} T(r, f_i),$$

and $T(r, f)$ is an increasing function of r.

As a corollary of Lemma 2.1 [5], considering the previous notations, we obtain the following Lemma 6 that also is known as the version p-adic of Jensen’s formula.

Lemma 6. Let $f \in \mathcal{M}(K)$ (resp. Let $f \in \mathcal{M}(d(0, R^-))$) be such that 0 is neither a zero nor a pole of f. Then,

$$\log |f|(r) = Z(r, f) - N(r, f) + \log |f(0)|.$$
Proposition 2. Let \(f \in \mathcal{M}(d(0, R^-)) \) be such that \(f(0) \neq 0, \infty \). Then, \(f \in \mathcal{M}_b(d(0, R^-)) \) if and only if \(T(r, f) \) is bounded in \([0, R[\). Let \(f \in \mathcal{M}(d(0, R^-)) \) be such that 0 is neither a zero nor a pole of \(f' \) and let \(S \) be a finite subset of \(\mathbb{K} \). We denote by \(Z_0^S(r, f') \) the counting function of zeros of \(f' \) in \(d(0, r) \) which are not zeros of any \(f - s \) for \(s \in S \). Then,

\[
Z_0^S(r, f') = \sum_{s \in S, w_{\alpha}(f-s)=0, |\alpha| \leq r} w_{\alpha}(f')(\log r - \log |\alpha|).
\]

Now we can state the ultrametric Nevanlinna Second Main Theorem in a basic form.

Theorem N. Let \(\beta_1, ..., \beta_n \in \mathbb{K} \) with \(n \geq 2 \), and let \(f \in \mathcal{M} (\mathbb{K}) \) (resp. let \(f \in \mathcal{M}(d(0, R^-)) \)). Let \(S = \{\beta_1, ..., \beta_n\} \). Assume that none of \(f, f' \) and \(f - \beta_j \) with \(1 \leq j \leq n \) equals 0 or \(\infty \) at the origin. Then, for all \(r > 0 \) (resp. for all \(r \in [0, R[\)), we have

\[
(n - 1)T(r, f) \leq \sum_{j=1}^{n} Z(r, f - \beta_j) + \mathcal{N}(r, f) - Z_0^S(r, f') - \log r + O(1).
\]

In order to go on, we remember the interesting corollary of the Nevanlinna Second Main Theorem on three small functions for \(p \)-adic analytic functions (see Theorem 4 [12]), which we will use later in the proof of Theorem 3.

Theorem T. Let \(f \in \mathcal{A}(\mathbb{K}) \) (resp. let \(f \in \mathcal{A}(d(0, R^-)) \)) be non-constant such that \(f(0) \neq 0, \infty \), and let \(u_1, u_2 \in \mathcal{A}(\mathbb{K}) \) (resp. let \(u_1, u_2 \in \mathcal{A}(d(0, R^-)) \)) be small functions with respect to \(f \) and not zero at 0. Then,

\[
T(r, f) \leq \mathcal{Z}(r, f - u_1) + \mathcal{Z}(r, f - u_2) + S(r)
\]

where \(S(r) = 2T(r, u_1) + 3T(r, u_2) - \log r + O(1) \).

2. Proofs of the Main Lemmas and Theorems

2.1. Proof of Lemma 1

Proof. It is sufficient to show the claim whenever \(f \in \mathcal{A}(d(0, R^-)) \). Let \(f(x) = \sum_{i=0}^{+\infty} c_i x^i \). Clearly we can notice that every zero of \(f \) in \(d(0, R^-) \) is also a zero of \(\hat{f} \) in \(\hat{d}(0, R^-) \).
Let \(r \in]0, R[\) and let \(\alpha_1, \ldots, \alpha_q \) be the zeros of \(f \) in the circle \(C(0, r) \) with
\[
\omega_{\alpha_i}(f) = s_i \quad \text{for} \quad i = 1, \ldots, q.
\]
Thereby, \(f \) is factorized in the form
\[
f = \prod_{i=1}^{q} (x - \alpha_i)^{s_i} g,
\]
where \(g \in \mathcal{A}(d(0, R^-)) \) and \(g(\alpha_i) \neq 0 \) for \(i = 1, \ldots, q \). Observe that this factorization also holds in \(\mathcal{M}(d(0, R^-)) \). Hence \(\alpha_i \) is also a zero of order \(s_i \) of \(\hat{f} \) for \(i = 1, \ldots, q \). Now, suppose that \(\hat{f} \) admits other zeros \(\alpha_{q+1}, \ldots, \alpha_t \) with \(\omega_{\alpha_i}(\hat{f}) = s_i \) for \(i = q + 1, \ldots, t \). By Theorem 23.1 [7], for all \(r \in]0, R[\), we have
\[
\nu^+(f, r) - \nu^-(f, r) = \sum_{i=1}^{q} s_i,
\]
and similarly, we have
\[
\nu^+(\hat{f}, r) - \nu^-(\hat{f}, r) = \sum_{i=1}^{t} s_i.
\]

But, we know that \(\nu^+(f, r), \nu^-(f, r), \nu^+(\hat{f}, r), \nu^-(\hat{f}, r) \) are only defined by the coefficients of \(f \). So, for \(r \in]0, R[\), we have \(\nu^+(f, r) = \nu^+(\hat{f}, r) \) and \(\nu^-(f, r) = \nu^-(\hat{f}, r) \). Consequently \(t = q \), which finishes the proof.

2.2. Proof of Lemma 2

Proof. Since \(f \) has no zeros in \(\Gamma(0, r', r'') \), then by Theorem 23.4 [7],
\[
\nu^+(f, r) = \nu^-(f, r) \quad \forall r \in]r', r''[.
\]
Moreover, since \(q = \nu(f, r) \quad \forall r \in]r', r''[\), we have
\[
|f(x)| = |a_q||x|^q \quad \forall x \in \Gamma(0, r', r'')
\]
with \(|a_q||x|^q > |a_n||x|^n \quad \forall q \neq n. \) Consequently, since \(|q| = 1 \) by our assumption that the residue characteristic of \(\mathbb{K} \) does not divide \(q \), we have
\[
|f'(x)| = \left| \sum_{n=-\infty}^{+\infty} na_n x^{n-1} \right| = |a_q||x|^q - 1 = \frac{1}{|x|} |a_q||x|^q.
\]
Therefore, we may deduce that \(|f'(x)| = \frac{|f(x)|}{|x|}. \)

2.3. Proof of Theorem 1

Proof. Let \(r > 0 \) (resp. \(r \in [1, R[\)). By Lemma 4 [3], we know that
\[
|f'|(r) \leq \frac{1}{2} |f|(r).
\]
We shall check that there exists a \(\rho \in]0, +\infty[\) (resp. \(\rho \in [1, R[\)) such that
\[
|f'|(r) < |Tf|(r) \quad \forall r \in]\rho, +\infty[\) (resp. \(\forall r \in]\rho, R[\)). Indeed, if \(f \in \mathcal{M}(\mathbb{K}) \) the existence of \(\rho \) is immediate because \(\lim_{r \to +\infty} |T|(r) > 0. \) Now, suppose that
Suppose first that \(f \) has a finite number of poles. Then, \(f \) has infinitely many zeros in \(\mathbb{K} \) (resp. in \(d(0, R^{-}) \)) because \(f \) is transcendental in \(\mathbb{K} \) (resp. is unbounded in \(d(0, R^{-}) \)). Moreover, there exists an increasing sequence \(\{r_n\}_{n \in \mathbb{N}} \) with \(\lim_{n \to +\infty} r_n = +\infty \) (resp. \(\lim_{n \to +\infty} r_n = R \)), such that \(f \) admits zeros and no poles in \(C(0, r_n) \), such that \(T \) has no zeros and no poles in \(C(0, r_n) \) and such that

\[
|f' + Tf|(r) = |Tf|(r) \quad \forall r \geq r_1.
\]

Since \(|f' + Tf|(r) = |Tf|(r) \) in a neighborhood of \(r_n \), we have

\[
\nu^+(f' + Tf, r_n) - \nu^-(f' + Tf, r_n) = \nu^+(f, r_n) - \nu^-(f, r_n),
\]

where \(\nu^+(f, r_n) - \nu^-(f, r_n) \) is the number of zeros of \(f \) in \(C(0, r_n) \) and \(\nu^+(f' + Tf, r_n) - \nu^-(f' + Tf, r_n) \) is the number of zeros of \(f' + Tf \) in \(C(0, r_n) \) (counting multiplicities). Hence, we may deduce that \(f' + Tf \) has zeros in \(C(0, r_n) \) and the number of zeros of \(f' + Tf \) is equal to the number of zeros of \(f \) in \(C(0, r_n) \) (counting multiplicities).

On the other hand, since each zero of \(f \) in \(C(0, r_n) \) either is not a zero of \(f' + Tf \) or is a zero of \(f' + Tf \) of order strictly lower than its order as a zero of \(f \), by (2) there does exist at least a zero of \(f' + Tf \) that is not a zero of \(f \) in \(C(0, r_n) \). Since this is true for all \(n \in \mathbb{N} \), we obtain that \(f' + Tf \) has infinitely many zeros in \(\mathbb{K} \) (resp. in \(d(0, R^{-}) \)) that are not zeros of \(f \).

Now, suppose that \(f \) has infinitely many poles. Then, there exists an increasing sequence \(\{r_n\}_{n \in \mathbb{N}} \) with \(\lim_{n \to +\infty} r_n = +\infty \) (resp. \(\lim_{n \to +\infty} r_n = R \)), such that \(f \) admits poles in \(C(0, r_n) \), such that \(T \) has no zeros and no poles in \(C(0, r_n) \) and such that

\[
|f' + Tf|(r) = |Tf|(r) \quad \forall r \geq r_1.
\]

Let \(n \in \mathbb{N} \). Let \(s_n \) and \(t_n \) be the number of zeros and that of poles of \(f \) in \(C(0, r_n) \) respectively, and let \(\gamma_n \) and \(\tau_n \) be the number of zeros and that of poles of \(f' + Tf \) in \(C(0, r_n) \) respectively. Then, we deduce that

\[
\nu^+(f, r_n) - \nu^-(f, r_n) = s_n - t_n \quad \text{and} \quad \nu^+(f' + Tf, r_n) - \nu^-(f' + Tf, r_n) = \gamma_n - \tau_n.
\]

Since \(|f' + Tf|(r) = |Tf|(r) \) in a neighborhood of \(r_n \), we have again

\[
\nu^+(f, r_n) - \nu^-(f, r_n) = \nu^+(f' + Tf, r_n) - \nu^-(f' + Tf, r_n).
\]
Consequently, $\gamma_n - \tau_n = s_n - t_n$ in $C(0, r_n)$. But we may observe that τ_n is the number of poles of f' in $C(0, r_n)$ (counting multiplicities). So, since T has no zeros and no poles in $C(0, r_n)$, we have $\tau_n > t_n$ which implies that $\gamma_n > s_n$. Thus, $f' + Tf$ must have at least one zero in $C(0, r_n)$ that is not a zero of f. Since this is true for all $n \in N$, we deduce that $f' + Tf$ has infinitely many zeros in \mathbb{K} (resp. in $d(0, R^-)$) which are not zeros of f.

2.4. Proof of Theorem 2

Proof. Assume, without loss of generality, that 0 is neither a zero nor a pole $T f_m$ and $f' + T f_m$. We shall prove that f has infinitely many zeros in \mathbb{K} (resp. in $d(0, R^-)$). First we suppose $f \in \mathcal{M}(\mathbb{K})$. By hypothesis $\limsup_{r \to +\infty} |f|(r) > 0$, i.e., there exist a sequence $\{\Gamma(0, r_n', r_n'')\} \in \mathbb{N}$ with $\lim_{n \to +\infty} r_n'' = +\infty$, and a constant $C > 0$, such that $Z(r, f) \geq N(r, f) + C$ $\forall r \in \bigcup_{n \in \mathbb{N}} [r_n', r_n'']$. If f has a finite number of zeros, say, q, then $Z(r, f) = q \log r$ and so $N(r, f) + C \leq q \log r$. Consequently f has a finite number of poles, a contradiction because f is transcendental.

Now, suppose $f \in \mathcal{M}_d(d(0, R^-))$. If f has a finite number of zeros in $d(0, R^-)$, then $\lim_{r \to R^-} Z(r, f) < +\infty$ and hence $\limsup_{r \to R^-} |f|(r) < +\infty$, a contradiction to our hypothesis.

Suppose that the set of zeros of $f' + T f_m$ which are not zeros of f is finite. Then, there exists a $\rho > 0$ (resp. $\rho \in [1, R]$) such that $f' + T f_m$ has no zeros other than the multiple zeros of f in $\mathbb{K} \setminus d(0, \rho)$ (resp. in $\Gamma(0, \rho, R)$) and such that T has no zeros and no poles in $\mathbb{K} \setminus d(0, \rho)$ (resp. in $\Gamma(0, \rho, R)$). So, each pole of $f' + T f_m$ is a pole of f_m of the same multiplicity. Hence,

$$\begin{align*}
N(r, f' + T f_m) - N(\rho, f' + T f_m) \\
= N(r, f_m) - N(\rho, f_m) \quad \forall r \in \mathbb{K} \setminus d(0, \rho) \quad (\text{resp. } \forall r \in]\rho, R[).
\end{align*}$$

Let $\sigma > \rho$ be such that $C(0, \sigma)$ contains at least one zero of f. Each zero of f, say, of order q, either is not a zero of $f' + T f_m$ or is a zero of $f' + T f_m$ with order $q - 1$. Since $f' + T f_m$ has no zeros in $C(0, r)$ other than the zeros of f and T has no zeros and no poles in $C(0, r)$, clearly the number of zeros of $f' + T f_m$ in $C(0, r)$ (counting multiplicities) is strictly inferior to the number of zeros of $T f_m$ (counting multiplicities). So, the function

$$\Psi(r) = Z(r, f_m) - Z(\rho, f_m) - \left[Z(r, f' + T f_m) - Z(\rho, f' + T f_m) \right]$$

is strictly increasing in $[\sigma, +\infty)$ (resp. in $[\sigma, R]$).
Now, we will show that there exists an increasing sequence of intervals \([r'_n, r''_n]\) with
\[
\rho < r'_n < r''_n < r'_{n+1}\] and \(\lim_{n \to +\infty} r'_n = +\infty\) (resp. \(\lim_{n \to +\infty} r''_n = R\)), such that
\[
|f' + Tf^m|(r) = |Tf^m|(r) \quad \forall r \in [r'_n, r''_n].
\]
Suppose first that \(f \in \mathcal{M}(\mathbb{K})\). Since
\[
\limsup_{r \to +\infty} |f(r)| > 0,
\]
there exist a sequence of annuli \(\{\Gamma(0, r'_n, r''_n)\}_{n \in \mathbb{N}}\) with \(\rho < r'_n < r''_n\) and \(\lim_{n \to +\infty} r''_n = +\infty\), and a constant \(C > 0\) such that
\[
|f|(r) > C \quad \forall r \in [r'_n, r''_n] \quad \forall n \in \mathbb{N}.
\]
Since \(T\) has no zeros and no poles in \([r'_n, r''_n]\) and \(\deg(A) \geq \deg(B)\), then there
exists a constant \(\lambda > 0\) such that \(|T|(r) \geq \lambda \quad \forall r \in [r'_n, r''_n]\). So
\[
|Tf^m|(r) > C^m \lambda \quad \forall r \in [r'_n, r''_n] \quad \forall n \in \mathbb{N}.
\]
On the other hand, by Lemma 4 [3], \(|f'|(r) \leq \frac{1}{\lambda} |f|(r)\). So, if we consider the
previous observation, we can deduce that
\[
\frac{|f'|}{|Tf^m|}(r) \leq \frac{1}{\lambda} \frac{1}{|Tf^m|(r)} < \frac{1}{\lambda r} \left(\frac{1}{C}\right)^{m-1}.
\]
However, for \(r\) sufficiently large, we have \(\frac{1}{\lambda r} \left(\frac{1}{C}\right)^{m-1} < 1\). Hence \(|f'|(r) < |Tf^m|(r)\).

Thereby,
\[
|f' + Tf^m|(r) = |Tf^m|(r).
\]
Thus, this equality holds in all annulus \(\Gamma(0, r'_n, r''_n)\) when \(r'_n\) is sufficiently large. Consequently, without loss of generality, we may assume that \(|f' + Tf^m|(r) = |Tf^m|(r) \quad \forall r \in [r'_n, r''_n] \quad \forall n \in \mathbb{N}\).

Now, we suppose that \(f \in \mathcal{M}_u(d(0, R^-))\). Since \(\limsup_{r \to R^-} |f|(r) = +\infty\)
there exists a sequence of annuli \(\{\Gamma(0, r'_n, r''_n)\}_{n \in \mathbb{N}}\) with \(\rho < r'_n < r''_n\) and
\(\lim_{n \to +\infty} r''_n = R\), such that \(|f|(r) \geq n \forall r \in [r'_n, r''_n]\) and \(n \in \mathbb{N}\). Since \(T \in \mathbb{K}(x)\), there
exists a constant \(\lambda > 0\) such that \(\inf_{r \in [1, R]} |T|(r) = \lambda\). Then, \(|Tf^m|(r) \geq \lambda |f|(r)^{m-1}\)
\(\forall r \in [r'_n, r''_n] \) and \(n \in \mathbb{N}\). Moreover, we can see that \(|f'|(r) < |f|(r) \forall r \in [r'_n, r''_n]\) because
\(r'_n > 1\). Consequently, when \(n\) is sufficiently large, we have
\[
|f'|(r) < \lambda |f|(r) \leq \lambda n^{m-1} |f|(r) \leq |Tf^m|(r) \quad \forall r \in [r'_n, r''_n],
\]
which implies that \(|f' + Tf^m|(r) = |Tf^m|(r) \forall r \in [r'_n, r''_n] |\).

Therefore, by Lemma 6, we obtain
\[
Z(r, Tf^m + f') - N(r, Tf^m + f')
= Z(r, f^m) - N(r, f^m) + \chi \quad \forall r \in [r'_n, r''_n],
\]
where \(\chi\) is defined as \(m \log |f(0)| - \log |T(0)f^m(0) + f'(0)|\). And by (3) and (4),
we can check that
\[
\Psi(r) = Z(\rho, f' + Tf^m) - N(\rho, f' + Tf^m) - Z(\rho, f^m) - N(\rho, f^m) + \chi.
\]
Consequently Ψ is constant in $[\sigma, +\infty[$ (resp. in $[\sigma, R]$), a contradiction because we have showed that it is strictly increasing. ■

2.5. Proof of Theorem 3

Proof. In order to prove Theorem 3, thanks to Lemma 1, we can place ourselves in $\hat{d}(0, R^-) \subset \mathbb{K}$ in the case when $f \in \mathcal{M}_u(\hat{d}(0, R^-))$. Since f is a transcendental meromorphic function in \mathbb{K} (resp. unbounded in $\hat{d}(0, R^-)$), there exist entire functions h, $l \in \mathcal{A}(\mathbb{K})$ (resp. h, $l \in \mathcal{A}(\hat{d}(0, R^-))$) without common zeros and at least one of them being transcendental (resp. unbounded) such that $f = \frac{1}{h}$. We can write h in the form \overline{h}, where the zeros of \overline{h} are exactly the different zeros of h but all with multiplicity 1. Then, necessarily, h' is multiple of \overline{h} in $\mathcal{A}(\mathbb{K})$ (resp. in $\mathcal{A}(\hat{d}(0, R^-))$). So $h' = u \overline{h}$ with $u \in \mathcal{A}(\mathbb{K})$ (resp. $u \in \mathcal{A}(\hat{d}(0, R^-))$).

Suppose that $f' + T f^m$ has a finite number of zeros in \mathbb{K} (resp. in $\hat{d}(0, R^-)$) which are not zeros of f. Then, there exists a polynomial $P \in \mathbb{K}[x]$ of degree q, having no common zeros with Bl, such that

$$f' + T f^m = \frac{P \overline{h}}{Bl^m}.$$

This implies

$$f' f^m = \frac{P \overline{h} - Ah^m}{Bh^m} = \frac{P - A\overline{h}h^{m-1}}{B \overline{h} h^{m-1}}. \tag{5}$$

On the other hand, we note that

$$f' f^m = \frac{t^{m-2}(h' l - hl')}{h^m} = \frac{t^{m-2}(ul - \overline{h}l')}{\overline{h} h^{m-1}}. \tag{6}$$

So, by (5) and (6),

$$Bl^{m-2}(ul - \overline{h}l') = P - A\overline{h}h^{m-1}.$$

Let $F = Bl^{m-2}(ul - \overline{h}l')$ and $s = \deg(A)$. Let $r > 0$ (resp. $r \in [1, R]$).

Applying Theorem T to F, and noting that $\overline{Z}(r, h) = \overline{Z}(r, \overline{h})^{m-1} = Z(r, \overline{h})$, we obtain

$$T(r, F) \leq \overline{Z}(r, F) + \overline{Z}(r, F - P) + 3T(r, P) - \log r + O(1)$$

$$\leq \overline{Z}(r, B) + \overline{Z}(r, t^{m-2}) + \overline{Z}(r, ul - \overline{h}l')$$

$$+ \overline{Z}(r, A) + \overline{Z}(r, h) + (3q - 1) \log r + O(1)$$

$$\leq Z(r, B) + Z(r, l)$$

$$+ Z(r, ul - \overline{h}l') + Z(r, h) + (3q + s - 1) \log r + O(1). \tag{7}$$
Moreover, we have

\[
T(r, F) = T(r, B) + T(r, t^{m-2}) + T(r, u l - \overline{\theta} l') + O(1)
\]

\[
= Z(r, B) + (m-2)Z(r, l) + Z(r, u l - \overline{\theta} l') + O(1).
\]

Let \(d = 3q + s - 1\). By (7) and (8), we deduce that

\[
(m-3)Z(r, l) \leq Z(r, h) + d \log r + O(1).
\]

Since we assume that the set of zeros of \(f' + T f^m\) that are not zeros of \(f\) is finite, by Theorem 2, we can restrict ourselves to the assumption \(\lim sup f(r) = 0\) (resp. \(\lim sup f(r) < +\infty\)) and therefore \(\lim sup[Z(r, l) - Z(r, h)] = +\infty\) (resp. \(\lim sup[Z(r, h) - Z(r, l)] < +\infty\)). Consequently, there exist a sequence \(\{r_n\}_{n \in \mathbb{N}}\) such that \(\lim_{n \to +\infty} r_n = +\infty\) (resp. \(\lim_{n \to +\infty} r_n = R\)), and a constant \(C > 0\) such that \(Z(r_n, h) < Z(r_n, l) + C\ \forall n \in \mathbb{N}\). So, by (9), we have

\[
(m - 4)Z(r_n, l) < d \log r_n + O(1).
\]

If we assume \(f \in \mathcal{M}(\mathbb{K})\), then by hypothesis, \(\lim sup |f|(r) = 0\) and so \(l\) is a transcendental function. Thereby, when \(m \geq 5\), we have \(\lim_{n \to +\infty} Z(r_n, l) = +\infty\), a contradiction to (10). Now, if we assume \(f \in \mathcal{M}_u(\overline{\theta} l(0, R^-))\), then at least one of the two functions \(h, l\) belongs to \(\mathcal{A}_u(\overline{\theta} l(0, R^-))\). Since, by hypothesis, \(\lim sup |f|(r) < +\infty\), we deduce that \(l\) must lie in \(\mathcal{A}_u(\overline{\theta} l(0, R^-))\) because if \(l \in \mathcal{A}_u(\overline{\theta} l(0, R^-))\), then \(h \in \mathcal{A}_u(\overline{\theta} l(0, R^-))\) and in this case \(\lim sup |f|(r) = +\infty\), a contradiction. Hence \(\lim_{n \to +\infty} Z(r_n, l) = +\infty\), a contradiction to (10) again.

Thus, when \(m \geq 5\), \(f' + T f^m\) has infinitely many zeros in \(\mathbb{K}\) (resp. in \(\overline{\theta} l(0, R^-)\)) which are not zeros of \(f\). Consequently, by Lemma 1, \(f' + T f^m\) has infinitely many zeros in \(\overline{\theta} l(0, R^-)\) that are not zeros of \(f\).

Now, consider \(T \equiv 1\) and suppose that \(f' + f^4\) has no zeros in \(\mathbb{K}\) which are not zeros of \(f\). Then \(d = -1\). So, by (10), we obtain

\[
0 < - \log r_n + O(1) \quad \forall n \in \mathbb{N},
\]

and hence we have a contradiction when \(n \to +\infty\). Consequently, \(f' + f^4\) has at least one zero in \(\mathbb{K}\) that is not a zero of \(f\).
2.6. Proof of Theorem 4

Proof. Let \(\{r_n\}_{n \in \mathbb{N}} \) be a \(g \)-suitable sequence. For each \(n \in \mathbb{N}^* \), there exists \(r'_n \in]r_n, r_{n+1}[\) such that \(g \) has no zero and no pole in the annulus \(\Gamma(0, r_n, r'_n) \). Consequently, by Lemma 2, we have \(\frac{g'(x)}{g(x)} = \frac{1}{x} \) \(\forall x \in \Gamma(0, r_n, r'_n) \). So, \(\nu\left(\frac{g'}{g}, r \right) = -1 \) \(\forall r \in]r_n, r'_n[\).

Observe that the poles of \(\frac{g'}{g} \) are all simple ones and correspond to the zeros and the poles of \(g \). Since \(g \) is a transcendental meromorphic function in \(\mathbb{K} \) (resp. \(g \) is unbounded in \(d(0, R^-) \)), we derive that \(\frac{g'}{g} \) has infinitely many poles in \(\mathbb{K} \) (resp. in \(d(0, R^-) \)). Moreover, since \(\nu\left(\frac{g'}{g}, r \right) = -1 \) whenever \(r \in]r_n, r'_n[\), by Corollary 5, the difference between the number of poles and the number of zeros of \(\frac{g'}{g} \) in \(d(0, r) \) is just 1. Then clearly, \(\frac{g'}{g} \) has infinitely many zeros in \(\mathbb{K} \) (resp. in \(d(0, R^-) \)).

2.7. Proof of Theorem 5

Proof. Here we assume \(\deg(A) = \deg(B) \). Let \(f \) be of the form \(\frac{h}{l} \) with \(h, l \in A(\mathbb{K}) \) having no common zeros. As in the proofs of Theorem 3, we can write \(h \) in the form \(\frac{\tilde{h}}{u} \), where the zeros of \(\tilde{h} \) are exactly the different zeros of \(h \) but all with multiplicity 1, and \(h' \) is of the form \(hu \) with \(u \in A(\mathbb{K}) \).

Suppose that \(f' + Tf^m \) only has finitely many zeros which are not zeros of \(f \). There exists a \(P \in \mathbb{K}[x] \) such that \(f' + Tf^m = \frac{Pl}{B^{m-1}l} \) with \(P \tilde{h} \) and \(Bl^m \) having no common zeros in \(\mathbb{K} \).

On the other hand, we have

\[
f' + Tf^m = \frac{[Bl^{m-2}(ul - \tilde{h} l') + Ah^{m-1}] \tilde{h}}{Bl^m}.
\]

Since \(h, l \) have no common zeros and since \(A, B \) have no common zeros either, each zero \(\alpha \) of \([Bl^{m-2}(ul - \tilde{h} l') + Ah^{m-1}] \tilde{h} \) that is not a zero of \(f' + Tf^m \) must be a zero of \(A \) or a zero of \(B \) or \(l \). But note that if \(\alpha \) is a zero of \(l \) then it is a zero of \(A \). Thus the zeros of \([Bl^{m-2}(ul - \tilde{h} l') + Ah^{m-1}] \tilde{h} \) which are not zeros of \(f' + Tf^m \) must be zeros of \(A \) or \(B \) and therefore are a finite number. Moreover, we notice that a zero \(\alpha \) of \([Bl^{m-2}(ul - \tilde{h} l') + Ah^{m-1}] \tilde{h} \) is not a zero of \(f \) except if it is a zero of \(B \), because a zero of \(f \) cannot be a zero of \(u \). Consequently, the zeros of \(f' + Tf^m \) that are not zeros of \(f \) are the zeros of \(Bl^{m-2}(ul - \tilde{h} l') + Ah^{m-1} \tilde{h} \) (counting multiplicities), except a finite number.

Next, we may notice that \(h \notin \mathbb{K}[x] \). Indeed, suppose \(h \in \mathbb{K}[x] \). Since \(f \notin \mathbb{K}(x) \), then \(l \notin \mathbb{K}[x] \) and hence \(Bl^{m-2}(ul - \tilde{h} l') + Ah^{m-1} \tilde{h} \notin \mathbb{K}[x] \). Therefore, \(Bl^{m-2}(ul - \tilde{h} l') + Ah^{m-1} \tilde{h} \) has infinitely many zeros which are not zeros of \(f \), a contradiction to our initial supposition.
Now, we consider $H = \frac{f'}{f'} = -\frac{A}{B} + \frac{\tilde{P} h}{B h^m} = -\frac{A}{B} + \frac{P}{B h^{m-1}}$. Since h is not a polynomial in K we have $\lim_{|x| \to +\infty} \frac{P(x)}{B h^{m-1}(x)} = 0$. Moreover, since $\deg(A) = \deg(B)$, A and B have the same number of zeros, taking multiplicities into account and hence we may derive that $\lim_{|x| \to +\infty} \frac{A(x)}{B(x)} = a$ with $a \in \mathbb{R}_+$. Hence, $\lim_{|x| \to +\infty} |H(x)| = a$. Consequently, there exists a $\rho > 0$ such that $\nu(H, r) = 0$ for all $r \geq \rho$.

On the other hand, since f is an optimal function, there exists a f-suitable sequence $\{r_n\}_{n \in \mathbb{N}}$ with $\lim_{n \to +\infty} r_n = +\infty$. Let $\{s_n\}_{n \in \mathbb{N}}$ be another sequence such that $r_n < s_n < r_{n+1}$ and such that $\nu(f, r)$ is constant inside $[r_n, s_n]$. By Proposition 20.9 [7], we have $\nu(\frac{r_n}{f'}, r) = \nu(f', r) - \nu(f, r) - 1$ for all $r \in [r_n, s_n]$. Consequently,

$$0 = \nu(H, r) = (1 - m)\nu(f, r) - 1$$

for all $r \in [r_n, s_n]$, a contradiction when $m \geq 3$. Thus, $f' + Tf^m$ has infinitely many zeros in K which are not zeros of f.

2.8. Proof of Theorem 6

Proof. As in the proof of Theorem 3, without loss of generality, we may place ourselves in the spherically complete field \hat{K} and consider $f \in M_n(\hat{d}(0, R^-))$. So, there exist functions $h, l \in A(\hat{d}(0, R^-))$ having no common zeros, such that $f = \frac{h}{l}$. Moreover, at least one of them is unbounded. As in the proofs of Theorems 3 and 5, we can write h in the form $\hat{h} h$, where the zeros of \hat{h} are exactly the different zeros of h but all with order 1. Then $h' = \tilde{h} u$ with $u \in A(\hat{d}(0, R^-))$.

Suppose that $f' + U f^m$ only has a finite number of zeros which are not zeros of f. The proof now is similar to this of Theorem 5. There exists $P \in \hat{K}[x]$ such that $f' + U f^m$ is of the form $\frac{\tilde{P} h}{\psi l^m}$ with $\tilde{P} h$ and ψl^m having no common zeros in $\hat{d}(0, R^-)$. Consequently, $f' = \frac{\tilde{P} h}{\psi l^m}$. Since f is an optimal function, there exists a f-suitable sequence $\{r_n\}_{n \in \mathbb{N}}$ such that $\lim_{n \to +\infty} r_n = R$. Let $\{s_n\}$ be another sequence such that $r_n < s_n < r_{n+1}$ and such that $\nu(f, r)$ is constant inside $[r_n, s_n]$. By Corollary 5, we have $\nu(f', r) = \nu(f, r) - 1$ for all $r \in [r_n, s_n]$, and by Proposition 20.9 [7], we have $\nu(\frac{r_n}{f'}, r) = \nu(f', r) - \nu(f, r) - 1$ for all $r \in [r_n, s_n]$. Consequently, as in the proof of the previous theorem, we have

$$\nu(\frac{r_n}{f'}, r) = -(m - 1)\nu(f, r) - 1$$

for all $r \in [r_n, s_n]$.\]
On the other hand, considering that \(f \) is of the form \(\frac{\psi h}{l} \) we deduce that

\[
f' + Uf^m = \left[\psi l^{m-2}(ul - \overline{hl}') + \phi h^m \overline{h}^{m-1} \right] \overline{h}.
\]

Let \(H = \frac{P_{\psi h} - \phi h^m}{\psi l^m} \). We shall prove that \(h \) is unbounded in \(\hat{d}(0, R^-) \). Suppose that \(h \in \mathcal{A}_h(\hat{d}(0, R^-)) \). Since \(\phi \) and \(\psi \) belong to \(\mathcal{A}_h(\hat{d}(0, R^-)) \), then \(H \) belong to \(\mathcal{M}_h(\hat{d}(0, R^-)) \), hence \(l \in \mathcal{A}_l(\hat{d}(0, R^-)) \). Thereby, \(\psi l^{m-2}(ul - \overline{hl}') + \phi h^m \overline{h}^{m-1} \) is an unbounded analytic function in \(\hat{d}(0, R^-) \). So, by Lemma 3, \(\psi l^{m-2}(ul - \overline{hl}') + \phi h^m \overline{h}^{m-1} \) has infinitely many zeros in \(\hat{d}(0, R^-) \), but these zeros are the zeros of \(f' + Uf^m \) that are not zeros of \(f \) except a finite number of them (see arguments in the proof of Theorem 5), a contradiction to our supposition. Hence, we may deduce that

\[
\lim_{r \to R^-} \left| \frac{P}{\psi h^{m-1}} \right|(r) = 0.
\]

Now, since \(\phi \) and \(\psi \) have the same finite number of zeros in \(\hat{d}(0, R^-) \) (counting multiplicities), there exists a \(\rho < R \) such that \(\nu(\frac{\phi}{\psi}, r) = 0 \) \(\forall r \in [\rho, R] \), and therefore \(|U|(r) \) is a constant \(c \) in \([\rho, R] \). Consequently, there exists a \(\rho' \in [\rho, R] \) such that \(|H|(r) = |U|(r) = c \) \(\forall r \in [\rho', R] \). Thus, \(\nu(H, r) = 0 \) \(\forall r \in [\rho', R] \).

The end of the proof is then similar to that of the previous theorem. By (11) and the previous observation, we have \((m-1)\nu(f, r) = -1 \) \(\forall r \in]r_n, s_n[\) \(\forall n \in \mathbb{N} \), which is absurd because \(m \geq 3 \). Hence \(f' + Uf^m \) has infinitely many zeros which are not zeros of \(f \) whenever \(m \geq 3 \).

\[\blacksquare \]

Acknowledgment

This work was supervised by Mr. Alain Escassut, Université Blaise Pascal, Laboratoire de Mathématique, Clermont-Ferrand. My sincere gratitude. I am also particularly grateful to the anonymous referee for many remarks.

References

Jacqueline Ojeda
Laboratoire de Mathématiques (UMR 6620)
Université Blaise Pascal
Campus Universitaire des Cèzeaux
63177 Aubiere Cedex
France
E-mail: Jacqueline.Ojeda@math.univ-bpclermont.fr