ON QUASI-ARMENDARIZ MODULES

Muhittin Başer and M. Tamer Koşan

Abstract. In this paper, we introduce the concept of a \((\alpha\)-quasi-Armendariz \) module, principally quasi-Baer module and study its some properties. In particular, we show: (1) For an \(\alpha\)-quasi-Armendariz module \(M_R\), \(M_R\) is a principally quasi-Baer module if and only if \(M[x; \alpha]_R[x; \alpha]\) is a principally quasi-Baer module. (2) A necessary and sufficient condition for a trivial extensions to be quasi-Armendariz is obtained. Consequently, new families of quasi-Armendariz rings are presented.

1. INTRODUCTION

Throughout this work all rings \(R\) are associative with identity and modules are unital right \(R\)-modules and \(\alpha : R \rightarrow R\) is an endomorphism of the ring \(R\). In [7] Clark called a ring \(R\) quasi-Baer ring if the right annihilator of each right ideal of \(R\) is generated (as a right ideal) by an idempotent. Recently, Birkenmeier et al. [4] called a ring \(R\) right (resp. left) principally quasi-Baer [or simply right (resp. left) p.q.-Baer] if the right (resp. left) annihilator of a principal right (resp. left) ideal of \(R\) is generated by an idempotent. \(R\) is called p.q.-Baer if it is both right and left p.q.-Baer. A ring \(R\) is called a right (resp. left) p.p.-ring if the right (resp. left) annihilator of every element of \(R\) is generated by an idempotent. \(R\) is called a p.p.-ring if it is both a right and left p.p.-ring. A ring is called reduced ring if it has no nonzero nilpotent elements and \(M_R\) is called \(\alpha\)-reduced module by Lee-Zhou [13] if, for any \(m \in M\) and \(a \in R\), (1) \(ma = 0\) implies \(mR \cap Ma = 0\), (2) \(ma = 0\) iff \(m\alpha(a) = 0\), where \(\alpha : R \rightarrow R\) is a ring endomorphism with \(\alpha(1) = 1\). The module \(M_R\) is called a reduced module if \(M\) is \(1_R\)-reduced. It is clear that \(R\) is a reduced ring if \(R_R\) is a reduced module.

In [13] Lee-Zhou introduced the following notation. For a module \(M_R\), we consider \(M[x; \alpha] = \left\{ \sum_{i=0}^{s} m_i x^i : s \geq 0, m_i \in M \right\}\). This set is an abelian group

Received January 28, 2006, accepted September 14, 2006.
Communicated by Wen-Fong Ke.
2000 Mathematics Subject Classification: 16D80.
Key words and phrases: (Quasi)-Armendariz module, (Quasi)-Baer module, p.p.-module.
under an obvious addition operation. Moreover \(M[x; \alpha] \) becomes a module over \(R[x; \alpha] \) under the following scalar product operation:

For \(m(x) = \sum_{i=0}^{s} m_i x^i \in M[x; \alpha] \) and \(f(x) = \sum_{j=0}^{t} a_j x^j \in R[x; \alpha] \), \(m(x)f(x) = \sum_{k=0}^{s+t} \left(\sum_{i+j=k} m_i \alpha^i(a_j) \right) x^k \).

The modules \(M[x; \alpha] \) is called the \textit{skew polynomial extension} of \(M \). When \(\alpha \) is identity, we write \(M[x]_{R[\alpha]} \) for \(M[x; 1_R]_{R[\alpha]} \).

According to Lee-Zhou [13] a module \(M_R \) is called \(\alpha \)-\textit{Armendariz} if the following conditions are satisfied:

1. For \(m \in M \) and \(a \in R \), \(ma = 0 \) if and only if \(m\alpha(a) = 0 \),
2. For any \(m(x) = \sum_{i=0}^{s} m_i x^i \in M[x; \alpha] \) and \(f(x) = \sum_{j=0}^{t} a_j x^j \in R[x; \alpha] \), \(m(x)f(x) = 0 \) implies \(m_i \alpha^i(a_j) = 0 \) for all \(i \) and \(j \).

The module \(M_R \) is \textit{Armendariz} iff \(M_R \) is 1-R-Armendariz. If \(M_R \) is \(\alpha \)-reduced then \(M_R \) is \(\alpha \)-Armendariz.

For a subset \(X \) of a module \(M_R \), let \(r_R(X) = \{ r \in R : Xr = 0 \} \). In [13] Lee-Zhou introduced Baer modules, quasi-Baer modules and \(p.p. \)-modules as follows.

1. \(M_R \) is called \textit{Baer} if, for any subset \(X \) of \(M \), \(r_R(X) = eR \) where \(e^2 = e \in R \).
2. \(M_R \) is called \textit{quasi-Baer} if, for any submodule \(N \) of \(M \), \(r_R(N) = eR \) where \(e^2 = e \in R \).
3. \(M_R \) is called \textit{principally projective} (or simply \(p.p. \)) if, for any \(m \in M \), \(r_R(m) = eR \) where \(e^2 = e \in R \).

2. \textbf{QUASI-ARMENDARIZ MODULES AND PRINCIPALLY QUASI-BAER MODULES}

Our focus in this section is to introduce the concept of a \((\alpha-)\) quasi-Armendariz module, principally quasi-Baer module and study its some properties. It is easy to see that the notation of quasi-Armendariz modules generalize that of Armendariz modules as well as that \(\alpha \)-reduced modules. We investigate connections to other related conditions.

Following [16] a ring \(R \) is called \textit{Armendariz} if, for any polynomials \(f(x) = \sum_{i=0}^{m} a_i x^i \) and \(g(x) = \sum_{j=0}^{n} b_j x^j \in R[x] \), \(f(x)g(x) = 0 \) implies \(a_i b_j = 0 \) for all \(i \) and \(j \). This notion is generalized by Hirano [8] as the follows; a ring \(R \) is called \textit{quasi-Armendariz} if, whenever \(f(x)R[x]g(x) = 0 \), where \(f(x) = \sum_{i=0}^{m} a_i x^i \), \(g(x) = \sum_{j=0}^{n} b_j x^j \in R[x] \) then \(a_i R b_j = 0 \) for all \(i \) and \(j \).

Armendariz rings are quasi-Armendariz. A commutative ring \(R \) is Armendariz if and only if it is quasi-Armendariz. The following example shows that there exists a quasi-Armendariz ring \(R \) such that \(R \) is not Armendariz.
Example 2.1. Let F be a field and consider the ring

$$R = \begin{pmatrix} F & F \\ 0 & F \end{pmatrix}.$$

Then by ([11], Example 1), R is not Armendariz. Since F is a quasi-Armendariz, $R = \begin{pmatrix} F & F \\ 0 & F \end{pmatrix}$ is a quasi-Armendariz by [8, Corollary 3.15].

Following Anderson and Camillo [1], a right R module M is called an Armendariz module if, whenever $m(x)f(x) = 0$ where $m(x) = \sum_{i=0}^{n} m_{i}x^{i} \in M[x]$ and $f(x) = \sum_{j=0}^{s} a_{j}x^{j} \in R[x]$, then $m_{i}a_{j} = 0$ for all i and j. Similarly one can define an Armendariz left R-module. Generalizing this definition, we begin the following.

Definition 2.2. A right R-module M is called quasi-Armendariz if, whenever $m(x)R[x]f(x) = 0$ where $m(x) = \sum_{i=0}^{n} m_{i}x^{i} \in M[x]$ and $f(x) = \sum_{j=0}^{s} a_{j}x^{j} \in R[x]$, then $m_{i}Ra_{j} = 0$ for all i and j.

Clearly, R is a quasi-Armendariz ring if and only if R_{R} is a quasi-Armendariz right R-module and Armendariz modules are quasi-Armendariz.

Example 2.3. Several easy examples of quasi-Armendariz modules can be given:

1. Every reduced module is a quasi-Armendariz module. (2) For any $n \in \mathbb{Z}$, \mathbb{Z}_{n} is a quasi-Armendariz \mathbb{Z}-module.

Lemma 2.4. Let M be an R-module.

1. The following are equivalent:

 (a) For any $m(x) \in M[x]$, $(r_{R[x]}(m(x)R[x]) \cap R)[x] = r_{R[x]}(m(x)R[x]).$

 (b) For any $m(x) = \sum_{i=0}^{n} m_{i}x^{i} \in M[x]$ and $f(x) = \sum_{j=0}^{s} a_{j}x^{j} \in R[x]$, $m(x)R[x]f(x) = 0$ implies $m_{i}Ra_{j} = 0$.

2. Let M_{R} be a quasi-Armendariz module and $m(x) \in M[x]$. If $r_{R[x]}(m(x)R[x]) \neq 0$, then $r_{R[x]}(m(x)R[x]) \cap R \neq 0$.

Proof. (1) (a) \Rightarrow (b) Let $m(x) = \sum_{i=0}^{n} m_{i}x^{i} \in M[x]$ and $f(x) = \sum_{j=0}^{s} a_{j}x^{j} \in R[x]$ be such that $m(x)R[x]f(x) = 0$. Then $f(x) \in r_{R[x]}(m(x)R[x])$. By (a) $f(x) \in (r_{R[x]}(m(x)R[x]) \cap R)[x]$, and so $a_{j} \in r_{R[x]}(m(x)R[x]) \cap R$ for all $j = 0, 1, \ldots, s$. Therefore, $m(x)R[x]a_{j} = 0$ and so $m_{i}Ra_{j} = 0$ for all i and j.

(b) \Rightarrow (a) Let $g(x) = \sum_{j=0}^{s} b_{j}x^{j} \in (r_{R[x]}(m(x)R[x]) \cap R)[x]$. Then $b_{j} \in r_{R[x]}(m(x)R[x])$ and so $m(x)R[x]b_{j} = 0$ for all j. Then $m(x)R[x]g(x) = 0$. Hence $g(x) \in r_{R[x]}(m(x)R[x])$. Therefore $(r_{R[x]}(m(x)R[x])) \cap R[x] \subseteq r_{R[x]}(m(x))$.

On Quasi-Armendariz Modules
Let $h(x) = \sum_{j=0}^{k} c_j x^j \in r_{R[x]}(m(x)R[x])$. Then $m(x)R[x]h(x) = 0$. By (b) $m_i R e_j = 0$. Therefore $m(x)R[x]c_j = 0$ for all j. Hence $c_j \in r_{R[x]}(m(x)R[x]) \cap R$ for all j, and so $h(x) \in (r_{R[x]}(m(x)R[x]) \cap R)[x]$. Thus $r_{R[x]}(m(x)R[x]) \subseteq (r_{R[x]}(m(x)R[x]) \cap R)[x]$. Hence $(r_{R[x]}(m(x)R[x]) \cap R)[x] = r_{R[x]}(m(x)R[x])$.

(2) Clear from (1) $(b) \Rightarrow (a)$. ■

A generalization of a zero commutative ring is a semicommutative ring. A ring R is semicommutative if $ab = 0$ implies $aRb = 0$ for $a, b \in R$. Historically, some of the earliest results known to us about semicommutative rings (although not so called at the time) was due to Shin [17].

McCoy [15] proved that if R is a commutative ring, then whenever $g(x)$ is a zero-divisor in $R[x]$, there exists a non-zero element $c \in R$ such that $cg(x) = 0$ and Hirano [8] proved that if R is a semi-commutative ring, then whenever $f(x)$ is a zero-divisor in $R[x]$ there exists a non-zero element $c \in R$ such that $f(x)c = 0$.

We shall extend these results to module case.

Proposition 2.5. Let M be a reduced module. If $m'(x)$ is a torsion element in $M[x]$ (i.e. $m'(x)h(x) = 0$ for some $0 \neq h(x) \in R[x]$), then there exists a non-zero element c of R such that $m'(x)c = 0$.

Proof. Let $m'(x) = \sum_{i=0}^{n} m_i x^i$ and $h(x) = \sum_{j=0}^{s} h_j x^j$ and $m'(x)h(x) = 0$.

Then

(1) $m_0 h_0 = 0$;
(2) $m_0 h_1 + m_1 h_0 = 0$;
(3) $m_0 h_2 + m_1 h_1 + m_2 h_0 = 0$;
\vdots
\vdots
(n + s) $m_n h_s = 0$.

Note that for a reduced module M for any $m \in M$ and any $a \in R$, $ma = 0$ implies $mRa = 0$ and $ma^2 = 0$ implies $ma = 0$ by Lemma 1.2 in [13]. By (1) $m_0 R h_0 = 0$ since M is reduced. Multiplying (2) by h_0 from the right and using hypothesis we obtain $m_1 Rh_0 = 0$ and so $m_0 Rh_1 = 0$. Multiplying (3) by h_0 from the right and using hypothesis, from (1) and (2), we have $m_2 h_0 = 0, m_1 h_1 = 0, m_0 h_2 = 0$, and so $m_2 Rh_0 = 0, m_1 Rh_1 = 0, m_0 Rh_2 = 0$. By induction, $m_i Rh_j = 0$ for all i and j. Assume that $h(x) \neq 0$. Then at least one of coefficients of $h(x)$ is nonzero, say $h_{j_0} \neq 0$. Then $m'(x)h_{j_0} = 0$. This completes the proof. ■

Now, we give the following new definition which is connected with Lee-Zhou definitions.
Definition 2.6. The module M is called principally quasi-Baer module (p.q.-Baer for short) if, for any $m \in M$, $r_R(mR) = eR$ where $e^2 = e \in R$.

It is clear that R is a right p.q.-Baer ring iff R_R is a p.q.-Baer module. If R is a p.q.-Baer ring, then for any right ideal I of R, I_R is a p.q.-Baer module. Every submodule of a p.q.-Baer module is p.q.-Baer module. Moreover, every quasi-Baer module is p.q.-Baer, and every Baer module is quasi-Baer. If R is commutative then M_R is a p.q.-module iff M_R is a p.q.-Baer module.

We can give the following definition by considering definition of α-Armendariz module.

M_R is called α-quasi-Armendariz if the following conditions are satisfied:

1. For any $m \in M$ and any $a \in R$, $ma = 0$ if and only if $ma(a) = 0$,
2. For any $m(x) = \sum_{i=0}^{s} m_i x^i \in M[x; \alpha]$ and $f(x) = \sum_{j=0}^{t} a_j x^j \in R[x; \alpha],
 m(x)R[x; \alpha]f(x) = 0$ implies $m_i R \alpha^t(a_j) = 0$ for all i and j.

Note that the module M_R is quasi-Armendariz if and only if M_R is a 1_R-quasi-Armendariz.

Theorem 2.7. Let M be an α-quasi-Armendariz module. Then M_R is a p.q.-Baer module if and only if $M[x; \alpha]_R[x; \alpha]$ is a $p.q.-Baer module$.

Proof. Assume that $M[x; \alpha]_R[x; \alpha]$ is a $p.q.-Baer module$. Let $m \in M$. Then there exists an idempotent $f(x) \in R[x; \alpha]$ such that $r_{R[x; \alpha]}(mR[x; \alpha]) = f(x)R[x; \alpha]$. Note that $f(x)R[x; \alpha] \subseteq r_{R[x; \alpha]}(mR) = r_{R}(mR[x; \alpha])$ always holds. Let $g(x) = b_0 + \ldots + b_t x^t \in r_{R}(mR[x; \alpha])$. Then $mR \beta_j = 0$ for all $0 \leq j \leq t$. By hypothesis $mR \alpha^j(b_j) = 0$ for all i and $0 \leq j \leq t$. Let $h(x) = \sum_{k=0}^{s} c_k x^k \in R[x; \alpha]$. Then $mh(x) b_j = \sum_{k=0}^{s} m_k c_k \alpha^j(b_j) x^k = 0$ for all j, and so $m(x) g(x) = 0$ for all $h(x) = \sum_{k=0}^{s} c_k x^k \in R[x; \alpha]$. Hence $g(x) \in r_{R[x; \alpha]}(mR[x; \alpha])$. Thus $r_{R[x; \alpha]}(mR[x; \alpha]) = f(x)R[x; \alpha] = r_{R}(mR)[x; \alpha]$. Let $f(x) = a_0 + a_1 x + \ldots + a_n x^n$ where all $a_i \in r_{R}(mR)$. Note that, for any $a \in r_{R}(mR)$, $f(x)a = a$. Hence $f(x)a = (a_0 + a_1 x + \ldots + a_n x^n)a = a_0 a + a_1 xa + \ldots + an x^n a = a$ implies that $a = a_0 a$. Since $a_0^2 = a_0$ and $r_{R}(mR) = a_0 R$, M_R is a $p.q.-Baer module$.

For the converse, assume that M_R is a $p.q.-Baer$. Let $m(x) = m_0 + m_1 x + \ldots + m_n x^n \in M[x; \alpha]$. Then $r_{R[x]}(m(x)R[x]) = r_{R[x]}(m(x)R[x]) \cap R[x] = r_R(m(x)R[x])$ by Lemma 2.4. Let C_{mR} the set of all coefficients of $m(x)R[x]$, i.e., $C_{mR} = \{m_i R : i = 0, \ldots, n\}$. $r_{R[x]}(m(x)R[x]) \cap R = r_{R}(m(x)R[x]) = r_R(C_{mR})$. Since M_R is a $p.q.-Baer$, $r_{R}[C_{mR}] = \cap_{i=0}^{n} r_{R}(m_i R) = \cap_{i=0}^{n} e_i R$, where $e_i^2 = e_i \in R$ and $r_{R}(m_i R) = e_i R$. We claim that $\cap_{i=0}^{n} e_i R = e R$, where $e^2 = e \in R$. Since $m_1 R e_1 = 0$, $m_1 R e_0 e_1 = 0$ and so $e_0 e_1 \in r_{R}(m_1 R) = e_1 R$.

On Quasi-Armendariz Modules 577
Thus \(e_1e_0e_1 = e_0e_1 \). Let \(f_1 = e_0e_1 \) then \(f_1^2 = (e_0e_1)(e_0e_1) = e_0e_1 = f_1 \) and \(e_0R \cap e_1R = f_1R \). Since \(m_2R e_2 = 0 \) and so \(f_1e_2 = e_2R \). Hence \(e_2f_1e_2 = f_1e_2 \). Let \(f_2 = f_1e_2 \). Then \(f_2^2 = f_2 \) and \(f_1R \cap e_2R = f_2R \).

Continuing this process, we obtain \(f_n^2 = f_n \) and so \(\cap_{i=0}^n f_iR = f_nR \). Thus \(r_{R[x;\alpha]}(m(x)R[x;\alpha]) = r_R(C_mR[x;\alpha]) = f_nR[x;\alpha] \).

Theorem 2.8. Let \(M_R \) be a reduced module. Then the following statements are equivalent;

1. \(M_R \) is a p.p.-module.
2. \(M_R \) is a p.q.-Baer module.
3. \(M[x]_{R[x]} \) is a p.p.-module.
4. \(M[x]_{R[x]} \) is a p.q.-Baer module.

Proof. (1) \(\Leftrightarrow \) (3) By [13, Corollary 2.12].
(2) \(\Leftrightarrow \) (4) Clear by Theorem 2.7 since every reduced module is quasi-Armendariz.
(1) \(\Leftrightarrow \) (2) Let \(m \in M \). If \(a \in r_R(m) \) then \(ma = 0 \) and by [13, Lemma 1.2], \(mRa = 0 \) and so \(a \in r_R(mR) \). Then \(r_R(m) \subseteq r_R(mR) \). But \(r_R(mR) \subseteq r_R(m) \) obviously holds. Consequently, \(r_R(mR) = r_R(m) = eR \). Hence the claim follows.

3. WHEN IS A TRIVIAL EXTENSION QUASI-ARMENDARIZ?

Given a ring \(R \) and a bimodule \(R M_R \), the trivial extension of \(R \) by \(M \) is the ring \(T(R, M) = R \oplus M \) with the usual addition and multiplication

\[
(r_1, m_1)(r_2, m_2) = (r_1r_2, r_1m_2 + m_1r_2).
\]

This is isomorphic to the ring of all matrices \(\begin{pmatrix} a & m \\ 0 & a \end{pmatrix} \) where \(a \in R, m \in M \).

Lemma 3.1. ([14, Lemma 2.1]) Let \(M \) be an \((R, R) \)-bimodule. Then \(M[x] \) is an \((R[x], R[x]) \)-bimodule and \(T(R[x], M[x]) = T(R, M)[x] \).

Proposition 3.2. Let \(M \) be an \((R, R) \)-bimodule. If the trivial extension \(T(R, M) \) is a quasi-Armendariz ring, then \(M \) is a quasi-Armendariz left and right \(R \)-module.

Proof. Let \(m(x) = m_0 + m_1x + \ldots + m_x x^n \in M[x] \), \(f(x) = a_0 + a_1x + \ldots + a_n x^n \in R[x] \) and suppose that \(f(x) R[x] m(x) = 0 \). For an arbitrary \(c \in R, n \in M \)
we have the following equation:

\[
\left(\sum_{i=0}^{n} \left(\begin{array}{cc} a_i & 0 \\ 0 & a_i \end{array} \right) x^i \right) \left(\begin{array}{cc} c & n \\ 0 & c \end{array} \right) \left(\sum_{j=0}^{s} \left(\begin{array}{cc} 0 & m_j \\ 0 & 0 \end{array} \right) x^j \right) \\
= \left(\begin{array}{cc} f(x) & 0 \\ 0 & f(x) \end{array} \right) \left(\begin{array}{cc} c & n \\ 0 & c \end{array} \right) \left(\begin{array}{cc} 0 & m(x) \\ 0 & 0 \end{array} \right) \\
= \left(\begin{array}{cc} f(x)c & f(x)n \\ 0 & m(x) \end{array} \right) \left(\begin{array}{cc} 0 & m(x) \\ 0 & 0 \end{array} \right) = \left(\begin{array}{cc} 0 & f(x)cm(x) \\ 0 & 0 \end{array} \right) = 0.
\]

Since \(T(R, M) \) is quasi-Armendariz,

\[
\left(\begin{array}{cc} a_i & 0 \\ 0 & a_i \end{array} \right) \left(\begin{array}{cc} c & n \\ 0 & c \end{array} \right) \left(\begin{array}{cc} 0 & m_j \\ 0 & 0 \end{array} \right) = 0
\]

for all \(i \) and \(j \). Therefore \(a_i cm_j = 0 \) for all \(i \) and \(j \). Consequently, \(M \) is a quasi-Armendariz left \(R \)-module. Similarly, \(M \) is a quasi-Armendariz right \(R \)-module.

Letting \(RMR = R R \) yields the following:

Corollary 3.3. If the trivial extension \(T(R, R) \) is a quasi-Armendariz ring, then also \(R \) is quasi-Armendariz.

Theorem 3.4. Let \(M \) be an \((R, R)\)-bimodule such that

1. \(R \) is a quasi-Armendariz ring.
2. \(M \) is an Armendariz left and quasi-Armendariz right \(R \)-module.
3. If \(f(x)Rg(x) = 0 \) in \(R[x] \), then \(f(x)M[x] \cap M[x]g(x) = 0 \).

Then the trivial extension \(T(R, M) \) is a quasi-Armendariz ring.

Proof. Suppose that \(\alpha(x)T(R, M)\beta(x) = 0 \) where

\[
\alpha(x) = \left(\begin{array}{cc} a_0 & m_0 \\ 0 & a_0 \end{array} \right) + \left(\begin{array}{cc} a_1 & m_1 \\ 0 & a_1 \end{array} \right) x + \ldots + \left(\begin{array}{cc} a_n & m_n \\ 0 & a_n \end{array} \right) x^n \in T(R, M)[x],
\]

\[
\beta(x) = \left(\begin{array}{cc} b_0 & l_0 \\ 0 & b_0 \end{array} \right) + \left(\begin{array}{cc} b_1 & l_1 \\ 0 & b_1 \end{array} \right) x + \ldots + \left(\begin{array}{cc} b_s & l_s \\ 0 & b_s \end{array} \right) x^s \in T(R, M)[x],
\]

Let \(f(x) = a_0 + a_1 x + \ldots + a_n x^n \), \(g(x) = b_0 + b_1 x + \ldots + b_s x^s \),

\(m(x) = m_0 + m_1 x + \ldots + m_n x^n \), \(l(x) = l_0 + l_1 x + \ldots + l_s x^s \).
Then \(f(x), g(x) \in R[x] \) and \(m(x), l(x) \in M[x] \). For an arbitrary \(\begin{pmatrix} a & m \\ 0 & a \end{pmatrix} \in T(R, M) \), it follows that

\[
0 = \begin{pmatrix} f(x) & m(x) \\ 0 & f(x) \end{pmatrix} \begin{pmatrix} a & m \\ 0 & a \end{pmatrix} \begin{pmatrix} g(x) & l(x) \\ 0 & g(x) \end{pmatrix} \\
= \begin{pmatrix} f(x)ag(x) & f(x)al(x) + f(x)mg(x) + m(x)ag(x) \\ 0 & f(x)ag(x) \end{pmatrix}.
\]

Thus \(f(x)ag(x) = 0 \) and \(f(x)al(x) + f(x)mg(x) + m(x)ag(x) = 0 \). Since \(a \in R \) arbitrary, \(f(x)Rg(x) = 0 \). Since \(R \) is a quasi-Armendariz by (1), \(a_i R b_j = 0 \) for all \(i \) and \(j \). Since \(f(x)[al(x) + mg(x)] + [m(x)a]g(x) = 0 \), \(f(x)[al(x) + mg(x)] = -[m(x)a]g(x) \in f(x)M[x] \cap M[x]g(x) = 0 \), so \(f(x)[al(x) + mg(x)] = [m(x)a]g(x) = 0 \). Since \(a \in R \) arbitrary \(m(x)Rg(x) = 0 \). Then by (2), \(m_i R b_j = 0 \) for all \(i \) and \(j \). And \(f(x)[al(x)] = -[f(x)m_i]g(x) \in f(x)M[x] \cap M[x]g(x) = 0 \) by (3). So \(f(x)al(x) = 0 \) and hence \(f(x)Rl(x) = 0 \). Then by (2), \(M \) is an Armendariz left \(R \)-module and hence \(M \) is a quasi-Armendariz left \(R \)-module. Therefore \(a_i R l_j = 0 \) for all \(i \) and \(j \). For arbitrary \(m \in M \), we have \(f(x)mg(x) = 0 \). But if \(f(x)m \in M[x] \) and since \(M \) is an Armendariz left \(R \)-module by (2), we obtain \(a_i mb_j = 0 \) for all \(i \) and \(j \). Therefore

\[
\begin{pmatrix} a_i & m_i \\ 0 & a_i \end{pmatrix} \begin{pmatrix} c & n \\ 0 & c \end{pmatrix} \begin{pmatrix} b_j & l_j \\ 0 & b_j \end{pmatrix} = \begin{pmatrix} a_i cb_j & a_i c l_j + a_i n b_j + m_i c b_j \\ 0 & a_i cb_j \end{pmatrix} = 0
\]

for all \(i, j \) and \(\begin{pmatrix} c & n \\ 0 & c \end{pmatrix} \in T(R, M) \). Consequently the trivial extension \(T(R, M) \) is a quasi-Armendariz ring.

Acknowledgment

We would like to thanks the referee for valuable suggestions which improved the paper considerable.

References

M. Tamer Koşan
Department of Mathematics,
Faculty of Science,
Gebze Institute of Technology,
Çaylırova Campus,
41400 Gebze Kocaeli,
Turkey
E-mail: mtkosan@aku.edu.tr